NEW QUATERNARY COMPOUND FeGdSbS4 IN THE FeSb2S4–FeGd2S4 SYSTEM

Authors

  • Gulnara N. Ismayilovа Azerbaijan State Pedagogical University, Azerbaijan
  • Sharafat H. Mammadov Institute of Catalysis and Inorganic Chemistry named after Academician Murtuza Nagiev of the Ministry of Science and Education of Azerbaijan, Azerbaijan https://orcid.org/0000-0002-1624-7345

DOI:

https://doi.org/10.15421/jchemtech.v33i4.331664

Keywords:

quaternary compound, crystal structure, , congruent melting, berthierite, thermal effects

Abstract

For the first time, the quaternary compound FeGdSbS was studied using various physicochemical methods over a wide temperature range. The study of the FeSbS–FeGdS system revealed that at a ratio of FeSbS:FeGdS = 1:1, the quaternary compound FeGdSbS forms. FeGdSbS melts congruently at 1200 K and has a berthierite-type structure (a = 11.382, b = 13.896, c = 3.614 Å; Z = 4; V = 571.606 ų, space group Pbam). The specific electrical conductivity of FeGdSbS at room temperature is 2×10⁻⁴ Om¹·m¹. FeGdSbS is an impurity semiconductor. The thermal band gap ΔEg of FeGdSbS is 1.31 eV. Investigation of the magnitude and sign of the thermoelectric power (TEP) and thermal conductivity in the FeSbS–FeGdS system shows that both dependencies reach their maxima at the composition corresponding to FeGdSbS. The Seebeck coefficient (α) for FeGdSbS is 1000 mkV/K, and the thermal conductivity is 1.32 Vt/m·K. The FeSbS–FeGdS system is a quasi-binary section characterized by the formation of a quaternary compound FeGdSbS, which melts congruently and belongs to the berthierite structural type.

References

Peng, Q., Hu, X., Zeng, T., Shang, B., Mao, M., Jiao, X., Xi, G. (2020). FeSb2S4 anchored on amine-modified graphene towards high-performance anode material for sodium ion batteries. Chemical engineering journal, 385, 123857–123865. https://10.1016/j.cej.2019.123857

Wang, P., Ding, Y., Chu, Y., Zhu, X., Lin, J., Shao, L., Zeng, T. (2023). Nano FeSb2S4 Anchored on Exfoliated Graphite for Sodium-Ion Battery Anode via a Two-Step Fabrication. American Chemical Society, 5577–5585. https://10.1021/acs.energyfuels.3c00106

Wintenberger, M., André, G. (1990). Magnetic properties and spiral magnetic structure of berthierite FeSb2S4. Physica. B, Condensed matter, 162(1), 5–12. https://10.1016/0921-4526(90)90086-A

Wintenberger, M., André, G. (1989). Magnetic structure of the mineral berthierite FeSb2S4. Physica. B, Condensed matter, 156–157, https://10.1016/0921-4526(89)90664-9

Liu, Y., Kang, C.-J., Stavitski, E., Du, Q., Petrovic, C. (2018). Polaronic transport and thermoelectricity in Fe₁-xCoₓSb₂S₄ (x=0,0.1,0.2), Phys. Rev. B 97, 155202

Anwar, A., Noor, N. A., Mustafa, G. M., Atiq, S., Ibrahim, A. & Laref, A. (2025). Mechanically robust and thermodynamically stable FeSc₂Z₄ (Z = S, Se) spinels for future spintronic architectures, RSC Advances, 15 (43), 35770–35781. DOI: 10.1039/D5RA04959H.

Furqan, M., Mustafa, G. M., Dawas Alkhaldi, H., Alhajri, F., Ameereh, G. I., Al Anazy, M. M., El Rayyes, A. Mahmood, Q. (2025). Study of the electronic, magnetic, and thermoelectric aspects of spinel chalcogenides SrCe₂Z₄ (Z = Te, Se, S) for spintronic and energy applications, RSC Advances, 15 (44), 37288–37298 DOI: 10.1039/D5RA03092G.

Noor, N. A., Tahir, M., Khan, M. A., Niaz, S., Ullah, H., Neffati, R. & Sharma, R. (2023). Theoretical study of rare earth in spinel chalcogenide MgCe₂Z₄ (Z = S, Se) for spintronic and thermo electric applications, Materials Science in Semiconductor Processing, 163, 107563. DOI: 10.1016/j.mssp.2023.107563.

Syed Awais Rouf, Hind Albalawi, Taharh Zelai, Othman Hakami, Nessrin A. Kattan, Samah Al Qaisi, Muhammad Younas, Khaild I. Hussein & Q. Mahmood. (2023). Half metallic ferromagnetism and thermoelectric effect in spinel chalcogenides SrX₂S₄ (X = Mn, Fe, Co) for spintronics and energy harvesting, Journal of Physics and Chemistry of Solids, 182, 111601. DOI: 10.1016/j.jpcs.2023.111601.

Zhang, L., Qin, B., Sun, C., Ji, Y. & Zhao, D. (2023). Effect of synthesis factors on microstructure and thermoelectric properties of FeTe₂, Materials, 16 (22), 7170 DOI: 10.3390/1996 1944/16/22/7170.

Ashiq Ramzan., Mudasir Younis Sofi., Mohammad Ishfaq ul Islam., Mohd Shahid Khan & M. Ajmal Khan. (2025). Half metallic ferromagnetism and thermoelectric efficient behavior in chalcogenide spinels MgNi₂X₄ (X = S, Se): a first principles approach, RSC Advances, 15 (29), 24002–24018. DOI: 10.1039/D5RA03555D

Mammadov, Sh. H., Gurbanov G.R., Ismailova R. A. (2025). Phase diagram of the AgGaS2–PbGa2S4 system. Voprosy Khimii i Khimicheskoi Tekhnologii, (1), 22–26. https://doi:10.32434/0321-4095-2025-158-1-22-26

Mammadov, Sh.H., Mammadov A.N., Kurbanova R.C. (2020). Quasi-Binary Section Ag2SnS3–AgSbS2. Russian Journal of Inorganic Chemistry, 65(2), 217–221. https://doi.org/10.1134/S003602362001012X

Mammadov, F.M. (2020). FeS-FeGa2S4-FeGaInS4 system. Chemical Problems, 18(2), 214–221. https://doi.org/10.32737/2221-8688-2020-2-214-221

Mammadov, F. M. (2021). New version of the phase diagram of the MnTe-Ga2Te3 system. New Materials, Compounds and Applications, 5(2), 116–121. http://jomardpublishing.com/UploadFiles/Files/journals/NMCA/V5N2/MammadovF.pdf

Mammadov, Sh.H. (2020). The study of the quasi-triple system FeS-Ga2S3-Ag2S by a FeGa2S4-AgGaS2 section. Kondensirovannye Sredy Mezhfaznye Granitsy, 22(2), 232–237. https://doi.org/10.17308/kcmf.2020.22/2835

Dixit, A., Ahmed, I., Abraham, J.,El‑Bahy, Z. M. (2024). Optoelectronic and thermoelectric properties of spinel chalcogenides HgLa₂X₄ (X = S, Se): A first‑principles study, Journal of Rare Earths, 42 (10), 1927–1936. DOI: 10.1016/j.jre.2023.11.014.

Suraj, K. S., Eivari, H. A., Tatara, G. & Assadi, M. H. N. (2024). Tripling magnetite’s thermoelectric figure of merit with rare earth doping, Journal of Materials Chemistry C, 12 (36), 19212–19218. DOI: 10.1039/D4TC03153A.

Zeng, Q., Sameeullah, M., & Ali, H. (2025). DFT study of chalcogenide spinels MnSc₂X₄ (X = S, Se): structural, electronic and thermoelectric behaviour, RSC Advances, 15 (22), 9662–9675. DOI: 10.1039/D4RA08334B.

Nazir, G., Alofi, A. S., Rehman, A., Mahmood, Q., Al‑Anazy, M. & Rahman, M. F. (2024). Rare earth based Mg‑chalcogenides MgDy₂(S/Se)₄ as an emerging aspirant for spintronic and thermoelectric applications, Materials Science in Semiconductor Processing, 173, 108129. DOI: 10.1016/j.mssp.2024.108129

Koc, A., Akbulut, H., Senol, S. (2024). Investigation of structural, optical, and thermoelectric properties of ZnFe₂O₄ and Ni‑doped ZnFe₂O₄, Ceramics International, 50 (22), 45251–45262.DOI: 10.1016/j.ceramint.2024.08.365.

Li, J., Xie, Y., Wang, Q., & Zhao, X. (2023). Magnetic and thermoelectric properties of rare‑earth substituted spinel ferrites: A review, Journal of Magnetism and Magnetic Materials, 543, 168780

Wei, Z., Deng, Y., Peng, P., Zhang, Y. & Zheng, Z. (2025). Advances in silver‑based chalcogenide flexible thermoelectric materials, CrystEngComm, 27 (8), 1055–1077 DOI: 10.1039/D4CE00915K.

Kabir, S. M., Rahman, M. T., Hossain, M. Z.R.(2024). ecent progress in chalcogenide spinels for thermoelectric applications, Journal of Materials Science: Materials in Electronics, 35, 4021–4045

Patel, R., Singh, D., Kumar, V. (2024). Density functional study of structural and thermoelectric properties of chalcogenide AB₂X₄ compounds, Computational Materials Science, 221, 112552

Gao, L., Zhou, H., Chen, G. (2025). Spinel chalcogenides as multifunctional materials for energy harvesting: synthesis and properties, Progress in Materials Science, 139, 101148

Downloads

Published

2025-12-25

Issue

Section

Physical and inorganic chemistry