DIMERIZATION OF MALEINATE CHLOROCOMPLEXES OF Cu+. QUANTUM-CHEMICAL MODELING

Authors

DOI:

https://doi.org/10.15421/jchemtech.v33i3.333798

Keywords:

maleate aquachlorocomplexes, Cu , dimerization, quantum chemical modeling

Abstract

The article presents the results of a theoretical study of the dimerization processes of Cu+ maleate complexes in an aqueous medium in the presence of chlorine anions. Quantum-chemical modeling by the DFT method (Gaussian 09, AIM2000) showed that the synthesis of Cu+ maleate π-complexes using CuCl salt as a precursor can be accompanied by dimerization of the product. Moreover, in addition to [L-Cu2Cl2-L] dimers, [H2O-Cu2Cl2-H2O] dimers can also be formed in solution. Consideration of the probable reactions of the interaction of maleic acid with dimeric aquachloro complexes allowed us to establish that the dimeric core cannot simultaneously contain both water and maleic acid in its internal coordination sphere. Comparison of the energy parameters of various reactions involving the [Cu2Cl2] cluster, water molecules, and all forms of maleic acid indicates that the most energetically favorable structures are dimers of anionic complexes. Therefore, in a weakly acidic environment, one should expect the appearance of [HM-Cu2Cl2-HM]2– ions, and in neutral and alkaline environments, [M-Cu2Cl2-M]4– ions. It has been established that the addition of all forms of maleic acid to [Cu2Cl2] leads to the rupture of the Cu-Cu bond and, as a consequence, to the weakening of this core in [L-Cu2Cl2-L] dimers.

Author Biography

Kateryna A. Plyasovska, Oles Honchar Dnipro National University

Кафедра физической и неорганической химии, доц.

References

Wang, X. S., Zhao, H., Li, Y. H., Xiong, R. G., You, X. Z. (2005). Olefin-copper (I) complexes and their properties. Topics in Catalysis, 35, 43–61. https://doi.org/10.1007/s11244-005-3812-6

Ashraf, J., Riaz, M. A. (2022). Biological potential of copper complexes: a review. Turkish Journal of Chemistry, 46(3), 595–623. https://doi.org/10.55730/1300-0527.3356

Harmalkar, S.S., Butcher, R. J., Gobre, V. V., Gaonkar, S. K., D’Souza, L. R., Sankaralingam, M., Furtado, І., Dhuri, S. N. (2019). Synthesis, characterization and antimicrobial properties of mononuclear copper (II) compounds of N,N′-di(quinolin-8-yl)cyclohexane-1,2-diamine. Inorganica Chimica Acta, 498, 119020. https://doi.org/10.1016/j.ica.2019.119020

Santiago, P. H., Santiago, M. B., Martins, C. H., Gatto, C. C. (2020). Copper (II) and zinc (II) complexes with Hydrazone: Synthesis, crystal structure, Hirshfeld surface and antibacterial activity. Inorganica Chimica Acta, 508, 119632. https://doi.org/10.1016/j.ica.2020.119632

Sharma, R. P., Kumar, S., Venugopalan, P., Gondil, V. S., Chhibber, S., Jezierska, J., Ferretti, V. (2016). Effect of heterocyclic nitrogen donor ligands on coordination behavior of weakly coordinating arylsulfonate: Synthesis, characterization and antimicrobial activities of [Cu(β-pic)4(2-Cl-5-nitrobenzenesulfonate)2]-(methanol) and [Cu(γ-pic)4(2-Cl-5 nitrobenzene-sulfonate)2]. Inorganica Chimica Acta, 449, 52–60. https://doi.org/10.1016/j.ica.2016.04.049

Urquiza, N. M., Islas, M. S., Dittler, M. L., Moyano, M. A., Manca, S. G., Lezama, L., Rojo, T., Medina, J. J. M., Diez, M., Tévez, L. L., Williams, P. A. M., Ferrer, E. G. (2013). Inhibition behavior on alkaline phosphatase activity, antibacterial and antioxidant activities of ternary methimazole–phenanthroline–copper(II) complex. Inorganica Chimica Acta, 405, 243–251. https://doi.org/10.1016/j.ica.2013.05.022

Soroceanu, A., Vacareanu, L., Vornicu, N., Cazacu, M., Rudic, V., Croitori, T. (2016). Assessment of some application potentials for copper complexes of the ligands containing siloxane moiety: Antimicrobial, antifungal, antioxidant and redox activity. Inorganica Chimica Acta, 442, 119–123. https://doi.org/10.1016/j.ica.2015.12.006

Kumar, S., Sharma, R. P., Venugopalan, P., Gondil, V. S., Chhibber, S., Aree, T., Witwicki, M., Ferretti, V. (2018). Hybrid inorganic-organic complexes: Synthesis, spectroscopic characterization, single crystal X-ray structure determination and antimicrobial activities of three copper(II)-diethylenetriamine-p-nitrobenzoate complexes. Inorganica Chimica Acta, 469, 288–297. https://doi.org/10.1016/j.ica.2017.09.032

Lima, F. C., Silva, T. S., Martins, C. H., Gatto, C. C. (2018). Synthesis, crystal structures and antimicrobial activity of dimeric copper (II) complexes with 2-hydroxyphenyl-ethylidene-dithiocarbazates. Inorga-nica Chimica Acta, 483, 464–472. https://doi.org/10.1016/j.ica.2018.08.032

Beheshti, A., Nozarian, K., Babadi, S. S., Noorizadeh, S., Motamedi, H., Mayer, P., Bruno, G., Rudbari, H. A. (2017). Structural variability in Cu(I) and Ag(I) coordination polymers with a flexible dithione ligand: Synthesis, crystal structure, microbiological and theoretical studies. Journal of Solid State Chemistry, 249, 70–79. https://doi.org/10.1016/j.jssc.2016.12.013

González-Ballesteros, N., Pérez-Álvarez, D., Rodríguez-Argüelles, M. C., Henriques, M. S., Paixão, J. A., Prado-López, S. (2016). Synthesis, spectral characterization and X-ray crystallographic study of new copper(I) complexes. Antitumor activity in colon cancer. Polyhedron, 119, 112–119. https://doi.org/10.1016/j.poly.2016.08.023

Zhang, Z., Wang, H., Wang, Q., Yan, M., Wang, H., Bi, C., Sun, S., Fan, Y. (2016). Anticancer activity and computational modeling of ternary copper (II) complexes with 3-indolecarboxylic acid and 1, 10-phenanthroline. International Journal of Oncology, 49(2), 691–699. https://doi.org/10.3892/ijo.2016.3542

Marzano, C., Pellei, M., Tisato, F., Santini, C. (2009). Copper complexes as anticancer agents. Anti-Cancer Agents in Medicinal Chemistry-Anti-Cancer Agents, 9(2), 185–211. https://doi.org/10.2174/187152009787313837

Vargalyuk, V.F., Polonskyy, V. A., Sklyar, T. V., Stets, N. V., Laguta O. V. (2023). Physico-chemical and bactericidal properties of copper-containing composites based on maleinate complexes Cu+. Journal of Chemistry & Technologies, 31(2), 208–215. https://doi.org/10.15421/jchemtech.v31i2.275070

Pavliuk, O., Goreshnik, E. (2019). [Synthesis and crystal structure of heterohalogenated π-complexes of Cu(I) with 1, 3-dialylbenzimidazolone]. Bulletin of Lviv University. Chemical series, 60(1), 170–178. (In Ukrainian).

Yang, L., Powell, D. R., Houser, R. P. (2007). Structural variation in copper(I) complexes with pyridylmethylamide ligands: structural analysis with a new four-coordinate geometry index, τ 4. Dalton Transactions, (9), 955–964. https://doi.org/10.1039/B617136B

Slyvka, Yu. (2017). [Peculiarities of construction of crystalline π-complexes of copper (I) benzene sulfonate with 2-amino-5-allylthio-1,3,4-thiadiazole]. Bulletin of Lviv University. Chemical series, 58(1), 172–180. (In Ukrainian).

Ardan, B., Kinzhybalo, V., Slyvka, Y., Shyyka, O., Lukyanov, M., Lis, T., Myskiv, M. (2017). Ligand-forced dimerization of copper(I)–olefin complexes bearing a 1,3,4-thiadiazole core. Crystal Structure Communications, 73(1), 36–46. https://doi.org/10.1107/S2053229616018751

Slyvka, Y. I., Fedorchuk, A. A., Pokhodylo, N. T., Lis, T., Kityk, I. V., Mys’ kiv, M. G. (2018). A novel copper(I) sulfamate π-complex based on the 5-(allylthio)-1-(3, 5-dimethylphenyl)-1H-tetrazole ligand: Alternating-current electrochemical crystallization, DFT calculations, structural and NLO properties studies. Polyhedron, 147, 86–93. https://doi.org/10.1016/j.poly.2018.03.015

Slyvka, Yu. (2019). [π- complexes of copper(i) chloride and copper(i) perchlorate with 2-allylthio-5-methyl-1,3,4-thiadiazole: synthesis and crystal structure]. Bulletin of Lviv University. Chemical series, 60(1), 155–162. (In Ukrainian).

Lukyanov, M., Slyvka, Y., Ardan, B., Miskiv, M. (2018). [Synthesis and crystal structure of a π-complex of copper(I) sulfamate with 32-(N-allyl)-amino-5-methyl-1,3,4-thiadiazole composition [Cu2(C6H10N3S2)2(NH2SO3)2].]. Bulletin of Lviv University. Chemical series, 59(1), 157–163. (In Ukrainian).

Vargalyuk, V. F., Osokin, Y. S., Polonskyy, V. A., Glushkov, V. N. (2019). Features of (dπ-pπ)-binding of Cu(I) ions with acrylic, maleic and fumaric acids in aqueous solution. Journal of Chemistry and Technologies, 27(2), 148–157. https://doi.org/10.15421/081916

Vargalyuk, V. F., Osokin, Y. S., Polonskyy, V. A. (2020). Formation of the π-complexes of copper atoms with acrylic, maleic and fumaric acids in aqueous medium. Journal of Chemistry and Technologies, 28(2), 153–116. https://doi.org/10.15421/082016

Kurasova, Y. D., Vargalyuk, V. F., Polonskyy, V. A. (2022). Quantum chemical modeling of aquachlorocomplexes of Cu+ with acrylic, maleic and fumaric acids. Journal of Chemistry and Technologies, 30(4), 530–536. https://doi.org/10.15421/jchemtech.v30i4.263280

Goreshnik, E. A., Veryasov, G., Morozov, D., Slyvka, Y., Ardan, B., Mys’ kiv, M. G. (2016). Solvated copper(I) hexafluorosilicate π-complexes based on [Cu2(amtd)2]2+(amtd = 2-allylamino-5-methyl-1,3,4-thiadiazole) dimer. Journal of Organometallic Chemistry, 810, 1–11. https://doi.org/10.1016/j.jorganchem.2016.03.001

Chemcraft. (n.d.). Chemcraft – graphical software for visualization of quantum chemistry computations (Version 1.8, build 682). https://www.chemcraftprog.com

Frisch, M. J. E. A. (2009). Gaussian 09, Revision D. 01, Gaussian." Inc, Wallingford CT 201.

Cortés-Guzmán, F., Bader, R. F. (2005). Complementarity of QTAIM and MO theory in the study of bonding in donor–acceptor complexes. Coordination Chemistry Reviews, 249(5-6), 633–662. https://doi.org/10.1016/j.ccr.2004.08.022

Biegler-Konig, F., Schonbohm, J., Bayles, D. (2001). Software news and updates-AIM2000-A program to analyze and visualize atoms in molecules. Journal of Computational Chemistry, 22(5), 545–559.

Tomasi, J., Mennucci, B., Cammi, R. (2005). Quantum mechanical continuum solvation models. Chemical reviews, 105(8), 2999–3094. https://doi.org/10.1021/cr9904009

Espinosa, E., Molins, E., Lecomte, C. (1998). Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities. Chemical physics letters, 285(3-4), 170–173. https://doi.org/10.1016/S0009-2614(98)00036-0

Vargaljuk, V., Okovytyy, S., Polonskyy, V., Kramska, O., Shchukin, A., Leszczynski, J. (2017). Copper crystallization from aqueous solution: initiation and evolution of the polynuclear clusters. Journal of Cluster Science, 28(5), 2517–2528. https://doi.org/10.1007/s10876-017-1239-4

Pratiwi, R., Ibrahim, S., Tjahjono, D. H. (2020). Reactivity and stability of metalloporphyrin complex formation: DFT and experimental study. Molecules, 25(18), 4221. https://doi.org/10.3390/molecules25184221

Published

2025-10-19

Issue

Section

Physical and inorganic chemistry