MODELING FLOW DYNAMICS OF CHEMICALLY REACTING MAXWELL FLUIDS OVER POROUS STRETCHING SHEETS

Authors

DOI:

https://doi.org/10.15421/jchemtech.v33i4.335312

Keywords:

Maxwell fluid; Stretching sheet; Nanofluid; Chemical reaction; R-K technique; Porous medium;

Abstract

This study explores the flow dynamics of chemically reacting Maxwell fluids over porous stretching sheets, focusing on the interplay between fluid rheology, chemical kinetics, and porous media effects. It analyzes the influence of the viscoelastic properties of a fluid on momentum and concentration of boundary layers, considering chemical reactions and the permeability of the stretching sheet.  The mathematical model accounts for the non-Newtonian nature of the Maxwell fluid, reaction kinetics, and porous medium resistance. Numerical solutions explore the effects of key parameters on velocity, concentration profiles, heat, and mass transfer rates. The findings offer insights into coupled transport phenomena in engineering processes involving non-Newtonian fluids, chemical reactions, and porous media. Dimensionless problems are numerically solved using the Runge-Kutta approach. The study focuses on important engineering parameters that affect velocity, concentration, and temperature profiles. Quantitative values of engineering factors such as skin-friction, Sherwood number, and Nusselt number coefficients are presented, and the results are analyzed using graphics and tabular representations. For program code validation, a numerical comparison with previously released data is provided.

References

Mutuku-Njane, W. N., Makinde, O. D. (2014). On hydromagnetic boundary layer flow of nanofluids over a permeable moving surface with newtonian heating, Latin Am. Appl. Res., 44, 57–62.

Behseresht, A., Noghrehabadi, A., Ghalambaz, M. (2014). Natural-convection heat and mass transfer from a vertical cone in porous media filled with nanofluids using the practical ranges of nanofluids thermo-physical properties, Chem. Eng. Res. Des., 92(3), 447–452, doi: 10.1016/j.cherd.2013.08.028.

Sheikholeslami, M., Sadoughi, M. K. (2019). Simulation of CuO-water nanofluid heat transfer enhancement in presence of melting surface, Int. J. Heat Mass Transf., 116, 909–919. https://doi.org/10.1016/j.ijheatmasstransfer.2017.09.086

Chamkha, A. J., Rashad, A. M., Gorla, R. S. R. (2014). Non-similar solutions for mixed convection along a wedge embedded in a porous medium saturated by a non-newtonian nanofluid: natural convection dominated regime, Int. J. Numer. Meth. Heat Fluid Flow, 24(5), 1471–1786.

Chamkha, J., Saeid A. M., Rashad, A. (2015). Non-Darcy natural convection flow of a non-newtonian nanofluid over a cone saturated in a porous medium with uniform heat and volume fraction fluxes, Int. J. Numer. Meth, Heat Fluid Flow, 25(2), 422–437.

Rashad, M., Ismael, M. A., Chamkha, A. J., Mansour, M.A. (2016). MHD mixed convection of localized heat source/sink in a nanofluid-filled lid-driven square cavity with partial slip, J. Taiwan Inst. Chem. Eng., 68, 173–186.

Rashad, А. M., Mallikarjuna, B., Chamkha, A. J., Raju, S. H. (2016). Thermophoresis effect on heat and mass transfer from a rotating cone in a porous medium with thermal radiation, Afrika Matematika, 27, 1409–1424.

Sivasankaran, M., Mansour, M. A., Rashad, A. M., Bhuvaneswari, M. (2016). MHD Mixed convection of cu-water nanofluid in a two-sided lid-driven porous cavity with a partial slip, Numer. Heat Transfer Part A, 70(12), 1356–1370.

Sheikholeslami, M., Jafaryar, M., Shafee, A., Li, Zh., Haq, R.-ul, (2019). Heat transfer of nanoparticles employing innovative turbulator considering entropy generation, Int. J. Heat Mass Transf., 136, 1233–1240. https://doi.org/10.1016/j.ijheatmasstransfer.2019.03.091

Muhammad, T., Waqas, H., Khan, S.A., Ellahi, R., Sait, S.M. (2021). Significance of nonlinear thermal radiation in 3D Eyring–Powell nanofluid flow with Arrhenius activation energy, J. Therm. Anal. Calorim., 143, 929–944. https://doi.org/10.1007/s10973-020-09459-4

Sreenivasulu, P., Poornima, T., Vasu, B., Gorla, R. S. R., Reddy, N. B. (2021). Non-linear radiation and Navier-slip effects on UCM nanofluid flow past a stretching sheet under Lorentzian force, J. Appl. Comput. Mech., 7(2), 638–645. doi:10.22055/JACM.2020.35880.2753

Zaidi, Z. A., Mohyud-Din, S. T. (2017). Effect of Joule heating and MHD in the presence of convective boundary condition for upper convected Maxwell fluid through wall jet, J. Mol. Liq., 230, 230–234.

Ibrahim, W., Negera, M. (2020) MHD slip flow of upper-convected Maxwell nanofluid over a stretching sheet with chemical reaction, J. Egypt. Math. Soc., 28, 7–34. https://doi.org/10.1186/s42787-019-0057-2

Sheikholeslami, M. (2019). Numerical approach for MHD Al2O3-water nanofluid transportation inside a permeable medium using innovative computer method, Comput. Methods Appl. Mech. Eng., 344, 306–318. https://doi.org/10.1016/j.cma.2018.09.042

Sivaiah, S., Gundagani, M. Karanamu, M. P. (2012). Analysis of Heat and Mass Transfer Effects on an Isothermal Vertical Oscillating Plate. Walailak J. Sci. Tech., (WJST), 9(4), 407–415.

Kirubaharan, D.R., Subhashini, A.D., Murali, G. (2024). Study of Three Dimensional Casson-Nanofluid Flow due to a Linear Porous Stretching Sheet in the Presence of Double Diffusion Effects, Advances in Systems Science and Applications, 24(3), 90–103. https://doi.org/10.25728/assa.2024.2024.03.1539

Murali, G., Deepa, G., Venkata Madhu, J., Nirmala Kasturi, V., Bhati, S.M., Narendra Babu, N. (2025). Three Dimensional Chemically Reacting Oldroyd-B Fluid + Nanofluid Flow in Presence of Thermophoresis and Brownian Motion Effects, Discontinuity, Nonlinearity, and Complexity, 14(2), 373–388. https://doi.org/10.5890/DNC.2025.06.010

Nagasmitha, B.R., Nagendramma, V., Ahmed, N., Marutamanikandan, S., Murali, G. (2025). Analytical Study of Nonlinear Behavior and Convection Patterns in Darcy-Brinkman Porous Medium with Maxwell-Cattaneo Ferroconvection, Journal of Mines, Metals and Fuels, 73(2), 437–445. https://doi.org/10.18311/jmmf/2025/47828

Murali, G., Lakshmi, P., Amarnath, M. Venkata Madhu J., Lingaswamy A. P. (2025). Three-dimensional MHD flow of a radiative Eyring–Powell nanofluid: Exploring Hall effects and heat transfer. Theor Math Phys, 223, 1070–1086. https://doi.org/10.1134/S0040577925060170

Singh, N., Kaur, J., Thakur, P., Murali, G. (2023). Structural behaviour of annular isotropic disk made of steel/copper material with gradually varying thickness subjected to internal pressure, structural integrity and life, 23(3), 293–297.

Bhati, S.M., Murali, G., Sanjay, Ch., Law of elecric fields via bianchi identities, Journal of Applied Science and Engineering,25(4),759-762, 2022.https://doi.org/10.6180/jase.202208_25(4).0011

Sivaaih, S., Murali, G., Reddy, M.C.K., Srinivasa Raju, R. (2012). Unsteady MHD mixed convection flow past a vertical porous plate in presence of radiation, International journal of basic and applied sciences, 1(4), 651–666.

Murali, G., Sivaiah, Sh., Ajit, P., Reddy, M. C. K. (2013). Unsteady magnetohydrodynamic free convective flow past a vertical porous plate, International journal of applied science and engineering, 11(3), 267–275.

Murali, G., Reddy, Sivaiah, M.C.K. (2012). Finite element solution of thermal radiation effect on unsteady MHD flow past a vertical porous plate with variable suction American Academic & Scholarly Research Journal,4 (3), 3-22,2012.

Babu, N.V.N., Murali, G., Ajit, P.. (2015). Soret and Dufour effect on unsteady hydromagnetic free convective fluid flow past an infinite vertical porous plate in the presence of chemical reaction, Journal of science and arts, 15(1), 99–111.

Murali, G., Venkata Madhu, J., Deepa, G., Suresh, P., Nagaraju, B. (2025). Three-Dimensional Oldroyd-B Fluid Flow Past a Stretching Surface with Magnetic Field, Nanofluid Particles and Cattaneo-Christov Double Diffusion Effects, Johnson Matthey Technology Review, 69(2), 299–320. https://doi.org/10.1595/205651325X17375408788409.

Gundagani, M., Javvaji, V., Gadipalli, D., Pallerla, S., Al-Mdallal, Q., Bhati, S. (2025). A Numerical Study on MHD 3-D Casson-Nanofluid Flow Past an Exponentially Stretching Sheet with Double Cattaneo-Christov Diffusion Effects, Rev. int. métodos numér. cálc. diseño ing., 41(2), 21.

Mebarek-Oudina, F., Dharmaiah, G., Rama Prasad, J. L., Vaidya, H., Kumari, M. A. (2025). Thermal and Flow Dynamics of Magnetohydxrodynamic Burgers' Fluid Induced by a Stretching Cylinder with Internal Heat Generation and Absorption, International Journal of Thermophysics, 25, 100986. https://doi.org/10.1016/j.ijft.2024.100986

Anil kumar, M. Mebarek-Oudina, F. Mangathai, P. Shah, N. A. Vijayabhaskar, Ch. Venkatesh, N. Fouad, Y. (2025). The Impact of Soret Dufour and Radiation on the Laminar Flow of a Rotating liquid past a Porous plate via Chemical Reaction, Modern Physics Letters B, 39(10), 2450458. https://doi.org/10.1142/S021798492450458X

Mebarek-Oudina, F., Bouselsal, M., Biswas, N., Vaidya, H., Ramesh, K. (2025). Heat transfer in a zigzag wall cavity and different obstacles filled with MgO-SWCNT/water hybrid nanofluids, Modern Physics Letters B, 2550163. https://doi.org/10.1142/S0217984925501635

Raza, J., Mebarek-Oudina, F., Ali, H., Sarris, I. E. (2024). Slip effects on Casson Nanofluid over a Stretching sheet with activation energy: RSM Analysis, Frontiers in Heat and Mass Transfer, 22(4), 1017–1041 https://doi.org/10.32604/fhmt.2024.052749

Ould Said, B., Mebarek-Oudina F. and Medebber, M. A. (2024) Magneto-hydro-Convective Nanofluid flow in Porous Square Enclosure, Frontiers in Heat and Mass Transfer, 22(5), 1343–1360. https://doi.org/10.32604/fhmt.2024.054164

Ramesh, K., Mebarek-Oudina, F., Souayeh, B. (2023). Mathematical Modelling of Fluid Dynamics and Nanofluids, 1st edition, CRC Press (Taylor & Francis). https://doi.org/10.1201/9781003299608

Mebarek-Oudina, F. (2025). CFD Simulation: Thermo-Fluids and Nanofluids in Engineering and Biomedicine, 1st edition, De-Gruyter, 2025, https://doi.org/10.1515/9783111405094

Mezaache, A., Mebarek-Oudina, F., Vaidya, H., Fouad, Y. (2024). Heat Transfer Analysis of Nanofluid Flow with Entropy generation in a Corrugated Heat Exchanger Channel Partially filled with Porous Medium. Heat Transfer, 53(8), 4625–4647. https://doi.org/10.1002/HTJ23149

Balla, C.S., Haritha, C., Naikoti, K., Rashad, A.M. (2019). Bioconvection in nanofluid-saturated porous square cavity containing oxytactic microorganisms. International journal of Numerical Methods for Heat & Fluid Flow., 29(4), 1448–1465. https://doi.org/10.1108/HFF-05-2018-0238

Alluguvelli, R., Balla, C.S., Naikoti, K. (2022). Bioconvection in Porous Square Cavity Containing Oxytactic Microorganisms in the Presence of Viscous Dissipation. Discontinuity, Nonlinearity, and Complexity. 11(2), 301–313. doi:10.5890/DNC.2022.06.009

Alluguvelli, R., Balla, C.S., Naikoti, K., Makinde, O.D. (2022). Nanofluid Bioconvection in Porous Enclosure with Viscous Dissipation. Indian Journal of Pure and Applied Physics. 60(1), 78–89.

Jumadi, A., Arbin, N., Saleh, H., Kechil, S.A. (2024). A Review of Entropy Generation in Rectangular Cavities. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 115(2), 178–221. https://doi.org/10.37934/arfmts.115.2.178221

Li, S., Lu, L., Liao, M. (2024). Numerical simulation of heat transfer and entropy generation due to the nanofluid natural convection with viscous dissipation in an inclined square cavity. Numeri Heat Transf A Appl. https://doi.org/10.1080/10407782.2024.2325121

Zafar, M., Sakidin, H., Sheremet, M. (2023). The Impact of Cavities in Different Thermal Applications of Nanofluids: A Review. Nanomaterials, 13(6). doi:10.3390/nano13061131

Balla, C.S., Bodduna, J., Kumari, S.K., Rashad, A.M. (2022). Effect of inclination angle on bioconvection in porous square cavity containing gyrotactic microorganisms and nanofluid. Proc Inst Mech Eng C J Mech Eng Sci. 236(9). https://doi.org/10.1177/09544062211055619

Oyewola, O.M., Afolabi, S.I. (2022). Examination of convective heat transfer and entropy generation by two adiabatic obstacles inside a cavity at different inclination angles. Frontiers in Heat and Mass Transfer, 19. doi:10.5098/hmt.19.20

Rajesh, V., Sheremet, M. (2023). Free Convection in a Square Ternary Hybrid Nanoliquid Chamber with Linearly Heating Adjacent Walls. Nanomaterials, 13(21). https://doi.org/10.3390/nano13212860

Khan, Y., Majeed, A.H., Shahzad, H. (2022). Numerical Computations of Non-Newtonian Fluid Flow in Hexagonal Cavity With a Square Obstacle: A Hybrid Mesh–Based Study. Front Phys., 10. https://doi.org/10.3389/fphy.2022.891163

Downloads

Published

2025-12-25

Issue

Section

Industrial gases. Chemical engineering