STUDY OF THE La-Ni-Ce TERNARY SYSTEM ACROSS THE LaNi5-CeNi5, LaNi5-CeNi, AND LaNi-CeNi POLYTHERMAL SECTIONS

Authors

DOI:

https://doi.org/10.15421/jchemtech.v33i4.335435

Keywords:

Transition metals, intermetallic compounds, LaNi5, CeNi5, solid solution, phase diagram.

Abstract

Intermetallic compounds of transition metals, especially lanthanides, and the new phases based on them attract the attention of researchers as effective adsorbers for hydrogen. Using physicochemical analysis techniques, including Differential Thermal Analysis (DTA), Powder x-ray Diffraction (PXRD) and Scanning Electron Microscope (SEM), the ternary La-Ni-Ce system was investigated across the LaNi5-CeNi5, LaNi5-CeNi, and LaNi-CeNi polythermal quasi-binary sections. The corresponding (T-x) phase diagrams have been constructed for the title system. The phase diagrams are quasi-binary and of the eutectic type. The systems have revealed wide regions of solid solutions based on starting compounds LaNi5, LaNi, CeNi5, CeNi. It has been established that the coordinates of the eutectic point formed on the basis of the initial components for the LaNi5-CeNi5, LaNi5-CeNi, and LaNi-CeNi sections are 50 mol% CeNi5, 1150 °C, 68 mol% CeNi, 650 °C, and 50 mol% CeNi, 620 °C, respectively. The obtained variable-composition phases can be considered as promising materials for hydrogen absorption.

References

Molinas, B., Pontarollo, A., Scapi, M., Peretti, H., Melnichu, M., Corso, H., Auror, A., Mirabile D., Montone, A. (2016). The optimization of MmNi5−xAlx hydrogen storage alloy for sea or lagoon navigation and transportation. Int. J. Hydrog. Energy. 41(32), 14484–14490. https://doi.org/10.1016/j.ijhydene.2016.05.222

Srivastava, S., Panwar, K. (2015). Effect of transition metals on ball-milled MmNi5 hydrogen storage alloy. Mater. Renew. Sustain. Energy. 4(19), 1–10. https://doi.org/10.1007/s40243-015-0062-9

Kulova, T. L., Nikolayev, I. I., Fateyev, V.N., Aliyev, A. Sh. (2018). Modern electrochemical systems of energy accumulation. Chem. Problems. 16(1), 9–34. https://doi.org/10.32737/2221-8688-2018-1-9-34

Todorovic, R. (2015). Hydrogen Storage Technologies for Transportation Application. J. Undergraduate Research. 8(1), 56–59. https://doi.org/ 10.5210/jur.v8i1.7541

Kurc, B., Gross, X., Szymlet, N., Rymaniak, Ł., Wozniak, K., Pigłowska, M. (2024). Hydrogen-powered vehicles: a paradigm shift in sustainable transportation. Energies, 17(69), 4768. https://doi.org/ 10.3390/en17194768

Barthelemy, H., Weber, M., Barbier, F. (2017). Hydrogen storage: Recent improvements and industrial perspectives. Int. J. Hydrogen Energy, 42(11), 7254–7262. https://doi.org/10.1016/j.ijhydene.2016.03.178

Talaganis, B.A. Esquivel, M.R. Meyer, G. (2009). Atwo-stage hydrogen compressor based on (La, Ce, Nd, Pr)Ni5 intermetallics obtained by lowen ergyme chanical alloying–low temperature annealing treatment. Int. J. Hydrogen Energy, 34, 2062–2068. https://doi.org/10.1016/j.ijhydene.2008.11.052

Ngameni, R. Mbemba, N. Grigoriev, S. A., Millet, P. (2011). Comparative analysis of the hydriding kinetics of LaNi5, La0.8Nd0.2Ni5 and La0.7Ce0.3Ni5 compounds. Int.J. Hydrogen Energy, 36(6), 4178–4184. https://doi.org/10.1016/j.ijhydene.2010.06.107

Lototskyy, M.V., Yartys, V.A. Pollet, B.G., Jr Bowman, R. C. (2014). Metal hydride hydrogen compressors: A review. Int. J. Hydrog Energy, 39(11), 5818–5851. https://doi.org/10.1016/j.ijhydene.2014.01.158

Gahleitner, G. (2013). Hydrogen from renewable electricity: an international review of power-to-gas pilot plants for stationary applications. Int. J. Hydrog Energy, 38(5), 2039–2061. https://doi.org/10.1016/j.ijhydene.2012.12.010

An, X.H., Gu, Q.F., Zhang, J.Y., Chena, S.L., Yu, X.B., Li, Q. (2013). Experimental investigation and thermodynamic reassessment of La–Ni and LaNi5–H systems. Calphad, 40, 48–55. https://doi.org/ 10.1016/j.calphad.2012.12.002

Afshari, M. (2017). Structural and magnetic properties of LaNi5 and LaNi3.94Al1.06 alloys, before and after hydrogenation. J. Supercond. Nov. Magn,30 (8),2255–2259. https://doi.org/10.1007/s10948-017-4045-1

Sato, T., Saitoh, H., Utsumi, R., Ito, J., Nakahira, Y., Obana, K., Takagi, S., Orimo, S. (2023). Hydrogen Absorption Reactions of Hydrogen Storage Alloy LaNi5 under High Pressure. Molecules, 28, 1256. https://doi.org/10.3390/molecules28031256

Mardani, M., Bajenova, I., Khvan, A., Cheverikin, V., Richter, K. (2020). Phase transformations and phase equilibria in the LaeNi and LaeNieFe systems. Part 1: Liquidus & solidus projections. J. Alloys and Compd. 845(10), 156356. DOI:10.1016/j.jallcom.2020.156356

Joubert, J.-M., Paul-Boncour, V., Cuevas, F., Zhang, J., Latroche, M. (2021). LaNi5 Related AB5 Compounds: Structure, Properties and Applications. J. Alloys Compd. 862, 158163. https://doi.org/10.1016/j.jallcom.2020.158163.

Zareii, S. M., Arabi, H., Pourarian, F. (2014). A comprehensive investigation of structural, morphological, hydrogen absorption and magnetic properties of MmNi4.22Co0.48Mn0.15Al0.15 alloy. Int. J. Mod. Phys. B, 28(19), 1450125. https://doi.org/10.1142/S0217979214501252

Zhang, L., Allendorf, M.D., Balderas–Xicohténcatl, R., Broom, D.P., Fanourgakis, G.S., Froudakis, G.E. (2022). Fundamentals of Hydrogen Storage in Nanoporous Materials. Prog. Energy., 4(4), 042013. doi:10.1088/2516-1083/ac8d44

Shashikala, K. (2012). 15-Hydrogen storage materials. İn book, Functional materials. London: Elsevier. https://doi.org/10.1016/B978-0-12-385142-0.00015-5

Liu, Y., Chabane, D., Elkedim, O. (2024). Optimization of LaNi5 hydrogen storage properties by the combination of mechanical alloying and element substitution. Int. J. Hydrogen Energy. 53(69), 394–402. doi:10.1016/j.ijhydene.2023.12.038

Wen, X., Wang, B., Li, C., Liu, T. (2024). Effect of La doping on the structural stability and hydrogen adsorption behavior of Ce-La alloys. J. Alloys Compd. 982, 173553. https://doi.org/10.1016/j.jallcom.2024.173553

Jain, R.K., Jain, A., Agarwal, Sh. N., Lalla, P., Ganesan, V., Phase, D.M., Jain, I.P. (2007). Hydrogenation behaviour of Ce-based AB5 intermetallic compounds. J. Alloys Compd., 440, 84–88. https://doi.org/10.1016/j.jallcom.2006.08.326

Borzone, E. M., Baruj, A., Blanco, M.V., Meyer, G.O. (2013). Dynamic measurements of hydrogen reaction with LaNi5-xSnx alloys. Int. J. Hydrogen Energy, 38(18), 7335–7343. https://doi.org/10.1016/j.ijhydene.2013.04.035

Jain, R.K., Jain, A., Agarwa Sh., Lalla, N.P., Ganesan, V., Phase, D.M., Jain, I.P. (2007). Characterization and hydrogenation of CeN 5-x Crx (x=0, 1, 2) alloys. J. Alloys Compd., 430, 165–169. https://doi.org/10.1016/j.jallcom.2006.05.013

Bakhtiyarli, I.B, Mammadov, V.S, Mukhtarova, Z.M, Abdullayeva, A.S (2023). Phase Equilibrium In The Quasi-Ternary System Y2O2S–Ga2S3–Tb2O2S. Azerb. Chem. Journal, 1, 55–64.

Mammadov, F. M. (2021). New version of the phase diagram of the MnTe-Ga2Te3 system. New Materials, Compounds and Applications, 5(2), 116–121.

Mammadov, F.M., Babanly, D.M., Orujlu, E.N., Niftiyev, N.N., Salmanov, F.T., Gasimov, R. J., Bayramov, M.A., Amiraslanov, I. R., Babanly, M. B. (2025). The phase equilibria in the MnSe–Ga2Se3–In2Se3 system, crystal structure and some physical properties of MnGaInSe4. J. Alloys Compd., 1036, 181814. https://doi.org/10.1016/j.jallcom.2025.181814

Mammadov, Sh.H., Ismailova, R. A., Gasanova, M. B. (2025). Ag2S-Ga2S3-PbS quasi-ternary system. Journal of chemistry and technologies. 33(2), 1-7.

Ismayilova, E.N., Baladzhayeva, A.N., Mashadiyeva, L.F. (2021). Phase equilibria along the Cu3SbSe4-GeSe2 section of the Cu-Ge-Sb-Se system. New Materials, Compounds and Applications, 5(1), 52–58.

Aghazade, A. I., Orujlu, E. N., Salimov, Z. E., Mammadov, A. N., Babanly, M. B. (2023). Experimental investigation of the solid phase equilibria at 300 K in the SnBi2Te4-PbBi2Te4-Bi2Te3 system. Phys. Chem. Solid State, 24(3), 453–459. https://doi.org/10.15330/pcss.24.3.453-459

Mammadov, F.M. (2020). FeS-FeGa2S4-FeGaInS4 system. Chem. Problems, 2(18), 214–221. https://doi.org/10.32737/2221-8688-2020-2-214-221

Ismailova, E. N. Mashadieva, L. F., Bakhtiyarly, I. B., Gasymov, V. A., Gurbanova, R. J., Mammadova, F. M. (2025). Phase Equilibria In The Cu2Se - Cu3SbSe4 - Cu2SnSe3 System. Chem. Problems, 1(23), 36–46. https://doi.org/10.32737/2221-8688-2025-1-36-46

Zhang, D., Jinke, T., Gschneidner, K. A. (1991). Are determination of the La–Ni phase diagram from LaNi to LaNi5 (50–83.3 at%Ni). J. Less- Common Met., 169, 45–53. https://doi.org/10.1016/0022-5088(91)90234-U

Inui, H., Yamamoto, T., Zhang, D., Yamaguchi, M. (1999). Microstructures and defect structures in intermetallic compounds in the La–Ni alloy system. J. Alloys Compd., 293, 140–145. https://doi.org/10.1016/S0925-8388(99)00314-X

An, X.H., Gu, Q.F., Zhang, J.Y., Chen, S.L., Yu, X.B., Li, Q. (2013). Experimental investigation and thermodynamic reassessment of La-Ni and LaNi5–H systems. Calphad, 40, 48–55. https://doi.org/10.1016/j.calphad.2012.12.002

Okamoto, H. (2020). Supplemental literature review of binary phase diagrams: Al-Pt, As-U, C-Li, C-Mg, Cd-Nd, Co-Ta, Fe-Re, Ga-Y, La-Ni, O-V, P-Si, and Re-Zr. J. Phase Equilib. Diffus. 41, 722–733. https://doi.org/10.1007/s11669-020-00839-9

Dwight, A.E., Conner, Jr, R.A., Downey, J.W. (1965). Equiatomic compounds of the transition and lanthanide elements with Rh, Ir, Ni and Pt. Acta Crystallogr., 18 (5), 835–839. https://doi.org/10.1107/S0365110X65002050

Xiong, W. Du, Y. Lu, X. Schuster, J., Chen, H. (2007). Reassessment of the Ce-Ni binary system supported by key experiments and ab initio calculations. Intermetallics, 15(11), 1401–1408. https://doi.org/10.1016/j.intermet.2007.04.004

Pourarian, F., Wallace, W.E. (1982). Hydrogen storage in CeNi5-xCux. Less-Common Metals, 87(2), 275–281. https://doi.org/10.1016/0022-5088(82)90094-7

Downloads

Published

2025-12-25

Issue

Section

Physical and inorganic chemistry