INTEGRATED MULTICRITERIA ANALYSIS OF HYDROGEN AND AMMONIA AS ALTERNATIVE MARINE FUELS IN THE MARITIME TRANSPORT DECARBONIZATION PROCESS

Authors

DOI:

https://doi.org/10.15421/jchemtech.v33i4.335825

Keywords:

maritime transport, ship operation, environmental safety, pollution prevention, NOₓ emissions, technical systems, power plants, ammonia toxicity, fuel economy, energy efficiency, port infrastructure, marine environment protection, marine decarbonization, alternative fuels, energy efficiency, port infrastructure, safety risk management.

Abstract

In this work, a new method of fuel selection for ships is proposed, taking into account indicators of efficiency, environmental friendliness and safety. First, the characteristics of hydrogen and ammonia as potential substitutes for traditional fuels are analyzed in detail with an emphasis on cost, energy efficiency and technical features of their storage and transportation. Next, with the help of statistical models, the risks of emergency situations were assessed, taking into account random factors for the quantitative determination of the probability of failures under different operating conditions. The next step is to formulate the task of optimal choice of route and type of fuel, combining economic costs and safety requirements. A separate section is devoted to the analysis of the full life cycle of fuel, from production to final consumption, which makes it possible to compare the environmental impact of different options. Based on the obtained results, a generalized index was developed that allows shipowners and operators to make informed decisions during the transition to «green» technologies. Examples of real projects illustrate the practical suitability of the approach and its prospects for fleet modernization in the face of global emissions reduction requirements.

References

Levikhin, A., Boryaev, A. (2025). Low-carbon ammonia-based fuel for maritime transport. Results in Engineering, 25, 104175. https://doi.org/10.1016/j.rineng.2025.104175

Schreuder, W., Slootweg, J. C., Van der Zwaan, B. (2025). Techno-economic assessment of low-carbon ammonia as fuel for the maritime sector. Applications in Energy and Combustion Science, 22, 100330. https://doi.org/10.1016/j.jaecs.2025.100330

Machaj, K., Kupecki, J., Malecha, Z., Morawski, A., Skrzypkiewicz, M., Stanclik, M., Chorowski, M. (2022). Ammonia as a potential marine fuel: A review. Energy Strategy Reviews, 44, 100926. https://doi.org/10.1016/j.esr.2022.100926

Li, Z., Wang, K., Liang, H., Wang, Y., Ma, R., Cao, J., Huang, L. (2025). Marine alternative fuels for shipping decarbonization: Technologies, applications and challenges. Energy Conversion and Management, 329, 119641. https://doi.org/10.1016/j.enconman.2025.119641

Dickson, U. J., Huang, C. (2025). 2050 UK shipping emissions of NOx, SOx, PM10, and PM2.5: What are the determining factors, is the zero pollution by 2050 feasible, and will the reduction rate for these pollutants be at the same pace? Marine Pollution Bulletin, 220, 118371. https://doi.org/10.1016/j.marpolbul.2025.118371

Jörissen, L. (2024). Fuels – Introduction | Hydrogen Industrial Use. Encyclopedia of Electrochemical Power Sources (Second Edition), 161–170. https://doi.org/10.1016/B978-0-323-96022-9.00267-X

Wang, Z., Li, M., Zhao, F., Ji, Y., Han, F. (2024). Status and prospects in technical standards of hydrogen-powered ships for advancing maritime zero-carbon transformation. International Journal of Hydrogen Energy, 62, 925–946. https://doi.org/10.1016/j.ijhydene.2024.03.083

Li, J., Xu, H., Zhou, K., Li, J. (2024). A review on the research progress and application of compressed hydrogen in the marine hydrogen fuel cell power system. Heliyon, 10(3), e25304. https://doi.org/10.1016/j.heliyon.2024.e25304

Islam Rony, Z., Mofijur, M., Hasan, M., Rasul, M., Jahirul, M., Forruque Ahmed, S., Kalam, M., Anjum Badruddin, I., Yunus Khan, T., Show, P. (2023). Alternative fuels to reduce greenhouse gas emissions from marine transport and promote UN sustainable development goals. Fuel, 338, 127220. https://doi.org/10.1016/j.fuel.2022.127220

Alrashid, R., Mahmoud, M., Alami, A. H. (2024). Introduction to Green Hydrogen and Green Ammonia. Comprehensive Green Materials, 256–271. https://doi.org/10.1016/B978-0-443-15738-7.00038-6

Van Sickle, E., Ralli, P., Pratt, J., Klebanoff, L. (2025). MV Sea Change: The first commercial 100% hydrogen fuel cell passenger ferry in the world. International Journal of Hydrogen Energy, 105, 389–404. https://doi.org/10.1016/j.ijhydene.2025.01.040

Jesus, B., Ferreira, I. A., Carreira, A., Ove Erikstad, S., Godina, R. (2024). Economic framework for green shipping corridors: Evaluating cost-effective transition from fossil fuels towards hydrogen. International Journal of Hydrogen Energy, 83, 1429–1447. https://doi.org/10.1016/j.ijhydene.2024.08.147

Xing, H., Stuart, C., Spence, S., Chen, H. (2021). Alternative fuel options for low carbon maritime transportation: Pathways to 2050. Journal of Cleaner Production, 297, 126651. https://doi.org/10.1016/j.jclepro.2021.126651

Tasleem, S., Bongu, C. S., Krishnan, M. R., Alsharaeh, E. H. (2024). Navigating the hydrogen prospect: A comprehensive review of sustainable source-based production technologies, transport solutions, advanced storage mechanisms, and CCUS integration. Journal of Energy Chemistry, 97, 166–215. https://doi.org/10.1016/j.jechem.2024.05.022

Harahap, F., Nurdiawati, A., Conti, D., Leduc, S., Urban, F. (2023). Renewable marine fuel production for decarbonised maritime shipping: Pathways, policy measures and transition dynamics. Journal of Cleaner Production, 415, 137906. https://doi.org/10.1016/j.jclepro.2023.137906

Abbas, M., Abbas, Q., Khan, A., Tayyab, S. M., Mehdi Rizvi, S. H., Raza, A., Haider Zaidi, S. S., Razzaqi, A. A., Haider, S., Sarfraz, S. A. (2024). Energy management in marine transportation sector. Reference Module in Earth Systems and Environmental Sciences. https://doi.org/10.1016/B978-0-44-313219-3.00151-9

Arias, A., Nika, C., Vasilaki, V., Feijoo, G., Moreira, M. T., & Katsou, E. (2024). Assessing the future prospects of emerging technologies for shipping and aviation biofuels: A critical review. Renewable and Sustainable Energy Reviews, 197, 114427. https://doi.org/10.1016/j.rser.2024.114427

Lee, G. N., Kim, J. M., Jung, K. H., Park, H. (2024). Comparative life cycle assessment of various hydrogen supply methods from Australia to the Republic of Korea in environmental and economic aspects. Science of The Total Environment, 947, 174669. https://doi.org/10.1016/j.scitotenv.2024.174669

Wang, Y., Cao, Q., Liu, L., Wu, Y., Liu, H., Gu, Z., Zhu, C. (2022). A review of low and zero carbon fuel technologies: Achieving ship carbon reduction targets. Sustainable Energy Technologies and Assessments, 54, 102762. https://doi.org/10.1016/j.seta.2022.102762

Fan, H., Abdussamie, N., Chen, P. S. L., Harris, A., Gray, E. M., Arzaghi, E., Bhaskar, P., Mehr, J. A., Penesis, I. (2025). Two decades of hydrogen-powered ships (2000–2024): Evolution, challenges, and future perspectives. Renewable and Sustainable Energy Reviews, 219, 115878. https://doi.org/10.1016/j.rser.2025.115878

Wang, Z., Dong, B., Li, M., Ji, Y., Han, F. (2024). Configuration of Low-Carbon fuels green marine power systems in diverse ship types and Applications. Energy Conversion and Management, 302, 118139. https://doi.org/10.1016/j.enconman.2024.118139

Hoang, A. T., Pandey, A., Martinez De Osés, F. J., Chen, W., Said, Z., Ng, K. H., Ağbulut, Ü., Tarełko, W., Ölçer, A. I., Nguyen, X. P. (2023). Technological solutions for boosting hydrogen role in decarbonization strategies and net-zero goals of world shipping: Challenges and perspectives. Renewable and Sustainable Energy Reviews, 188, 113790. https://doi.org/10.1016/j.rser.2023.113790

Melnyk, O., Onyshchenko, S., Onishchenko, O., Shumylo, O., Voloshyn, A., Ocheretna, V., & Fedorenko, O. (2024). Implementation Research of Alternative Fuels and Technologies in Maritime Transport. Studies in Systems, Decision and Control, 510, 13-31. https://doi.org/10.1007/978-3-031-44351-0_2

Melnyk, O., Onishchenko, O., Onyshchenko, S. (2023). Renewable Energy Concept Development and Application in Shipping Industry. Lex Portus, 9(6), 15–24. https://doi.org/10.26886/2524-101X.9.6.2023.2

Melnyk, O., Bulgakov, M., Fomin, O., Onyshchenko, S., Onishchenko, O., Pulyaev, I. (2025). Sustainable development of renewable energy in shipping: technological and environmental prospects. Scientific Journal of Silesian University of Technology. Series Transport, 127, 165–188. https://doi.org/10.20858/sjsutst.2025.127.10

International Energy Agency. (2024). World Energy Outlook 2024. https://www.iea.org/reports/world-energy-outlook-2024

Det Norske Veritas. (2025). Energy Transition Outlook 2025. https://www.dnv.com/energy-transition-outlook/

International Renewable Energy Agency. (2024a). World Energy Transitions Outlook 2024: 1.5 °C pathway. Available at: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2024/Nov/IRENA_World_energy_transitions_outlook_2024.pdf

International Renewable Energy Agency. (2024b). Renewable Energy Statistics 2024. https://www.irena.org/-media/Files/IRENA/Agency/Publication/2024/Jul/IRENA_Renewable_Energy_Statistics_2024.pdf

International Maritime Organization. (2023). 2023 IMO strategy on reduction of GHG emissions from ships. Доступно: https://www.imo.org/en/OurWork/Environment/Pages/2023-IMO-Strategy-on-Reduction-of-GHG-Emissions-from-Ships.aspx

International Maritime Organization. (2020). Fourth IMO GHG study 2020. Доступно: https://www.imo.org/en/Publications/Pages/Fourth-IMO-GHG-Study-2020.aspx

Brynolf, S., Taljegard, M., Grahn, M., Hansson, J. (2017). Electrofuels for the transport sector: A review of production costs. Renewable and Sustainable Energy Reviews, 81, 1887–1905. https://doi.org/10.1016/j.rser.2017.05.288

Valera-Medina, A., Xiao, H., Owen-Jones, M., David, W., Bowen, P. (2018). Ammonia for power. Progress in Energy and Combustion Science, 69, 63–102. https://doi.org/10.1016/j.pecs.2018.07.001

Ishak, M. I., Masri, A. N., Rasol, A. A. A., Ibrahim, I. M., & Hasbullah, H. (2025). Amino acid deep eutectic solvents (AADES) in oil purification: An overview of properties, applications, and future directions. Journal of Ionic Liquids, 5(1), 100143. https://doi.org/10.1016/j.jil.2025.100143

Shumylo, O., Yarovenko, V., Malaksiano, M., & Melnyk, O. (2023). Comprehensive assessment of hull geometry influence of a modernized ship on maneuvering performance and propulsion system parameters. Pomorstvo, 37(2), 314–325. https://doi.org/10.31217/p.37.2.13

Anantharaman, M., Sardar, A., Islam, R. (2025). Decarbonization of shipping and progressing towards reducing greenhouse gas emissions to net zero: A bibliometric analysis. Sustainability, 17(7), 2936. https://doi.org/10.3390/su17072936

Sagin, S., Haichenia, O., Karianskyi, S., Kuropyatnyk, O., Razinkin, R., Sagin, A., Volkov, O. (2025). Improving green shipping by using alternative fuels in ship diesel engines. Journal of Marine Science and Engineering, 13(3), 589. https://doi.org/10.3390/jmse13030589

Petrychenko, O., Levinskyi, M., Goolak, S., Lukoševičius, V. (2025). Prospects of solar energy in the context of greening maritime transport. Sustainability, 17(5), 2141. https://doi.org/10.3390/su17052141

Christopher Selvam, D., Raja, T., Nagappan, B., Upadhye, V. J., Guntaj, J., Devarajan, Y., & Mishra, R. (2025). The role of biodiesel in marine decarbonization: Technological innovations and ocean engineering challenges. Results in Engineering, 25, Article 103974. https://doi.org/10.1016/j.rineng.2025.103974

Kalafatelis, A. S., Nomikos, N., Giannopoulos, A., Alexandridis, G., Karditsa, A., & Trakadas, P. (2025). Towards predictive maintenance in the maritime industry: A component-based overview. Journal of Marine Science and Engineering, 13(3), 425. https://doi.org/10.3390/jmse13030425

Melnyk, O. M., Onishchenko, O. A., Shyshkin, O. V., Volkov, O. M., Volyanskyy, S. M., Maulevych, V. O., Kreitser, K. O. (2024). Enhancing shipboard technical facility performance through the utilization of low-sulfur marine fuel grades. Journal of Chemistry and Technologies, 32(1), 233–245. https://doi.org/10.15421/jchemtech.v32i1.297916

Onishchenko, O., Bukaros, A., Melnyk, O., Yarovenko, V., Voloshyn, A., Lohinov, O. (2023). Ship refrigeration system operating cycle efficiency assessment and identification of ways to reduce energy consumption of maritime transport. In Studies in Systems, Decision and Control, 481, 641–652). Springer. https://doi.org/10.1007/978-3-031-35088-7_36

Korban, D., Melnyk, O., Onishchenko, O., Kurdiuk, S., Shevchenko, V., Obniavko, T. (2024). Radar-based detection and recognition methodology of autonomous surface vehicles in challenging marine environment. Scientific Journal of Silesian University of Technology. Series Transport, 122, 111–127. https://doi.org/10.20858/sjsutst.2024.122.7

Melnyk, O., Onishchenko, O., Onyshchenko, S., Yaremenko, N., Maliuha, E., Honcharuk, I., Shamov, O. (2024). Innovative technologies for the maritime industry: Hydrogen fuel as a promising direction. In Studies in Systems, Decision and Control, 510, 23–34). Springer. https://doi.org/10.1007/978-3-031-44351-0_3

Melnyk, O., Onyshchenko, S., Onishchenko, O., Shibaev, O., Volyanskaya, Y. (2024). A comprehensive approach to structural integrity analysis and maintenance strategy for ship’s hull. Journal of Maritime Research, 21(1), 36–44.

Melnyk, O., Onyshchenko, S., Onishchenko, O., Shumylo, O., Voloshyn, A., Ocheretna, V., Fedorenko, O. (2024). Implementation research of alternative fuels and technologies in maritime transport. In Studies in Systems, Decision and Control, 510, 13–21. Springer. https://doi.org/10.1007/978-3-031-44351-0_2

Onishchenko, O. A., Melnyk, O. M., Yarovenko, V. A., Aleksandrovska, N. I., Kurdiuk, S. V., Parmenova, D. G., Storchak, O. O. (2023). Study of efficiency and advancement of marine engine oil purification and filtration technologies. Journal of Chemistry and Technologies, 31(4), 762–774. https://doi.org/10.15421/jchemtech.v31i4.285643

Onyshchenko, S., Bychkovsky, Y., Melnyk, O., Onishchenko, O., Jurkovič, M., Rubskyi, V., Liashenko, K. (2024). A model for assessing shipping safety within project-orientated risk management based on human element. Scientific Journal of Silesian University of Technology. Series Transport, 123, 319–334. https://doi.org/10.20858/sjsutst.2024.123.16

Melnyk, O., Onishchenko, O., Onyshchenko, S., Voloshyn, A., Ocheretna, V. (2023). Comprehensive study and evaluation of ship energy efficiency and environmental safety management measures. In Studies in Systems, Decision and Control, 481, 665–679. Springer. https://doi.org/10.1007/978-3-031-35088-7_38

Sagin, S., Chymshyr, V., Karianskyi, S., Kuropyatnyk, O., Madey, V., Rusnak, D. (2025). Using ultrasonic fuel treatment technology to reduce sulfur oxide emissions from marine diesel exhaust gases. Energies, 18(17), 4756. https://doi.org/10.3390/en18174756

Minchev, D. S., Varbanets, R. A., Alexandrovskaya, N. I., Pisintsaly, L. V. (2021). Marine diesel engines operating cycle simulation for diagnostics issues. Acta Polytechnica, 61(3), 428–440. https://doi.org/10.14311/ap.2021.61.0435

Varbanets, R., Minchev, D., Kucherenko, Y., Zalozh, V., Kyrylash, O., Tarasenko, T. (2024). Methods of real-time parametric diagnostics for marine diesel engines. Polish Maritime Research, 31(3), 71–84. https://doi.org/10.2478/pomr-2024-0037

Onyshchenko, S., Bondar, A., Andrievska, V., Sudnyk, N., Lohinov, O. (2019). Constructing and exploring the model to form the road map of enterprise development. Eastern-European Journal of Enterprise Technologies, 5(3-101), 33–42. https://doi.org/10.15587/1729-4061.2019.179185

Downloads

Published

2025-12-25

Issue

Section

Industrial gases. Chemical engineering