PHASE EQUILIBRIA IN THE HfO2–La2O3–Nd2O3 SYSTEM AT 1500 °С

Authors

DOI:

https://doi.org/10.15421/jchemtech.v33i4.336018

Keywords:

Phase diagram, isothermal section, hafnium dioxide, rare-earth oxides, HfO2–La2O3–Nd2O3 system, solid solutions

Abstract

Phase equilibria within the HfO2La2O3Nd2O3 ternary system (across the 0-100 mol% HfO2 concentration range) were investigated using X-ray phase analysis and microstructural analysis. Based on the experimental results, an isothermal section of the phase diagram at 1500 °С was constructed. It was established that at this temperature, the HfO2La2O3Nd2O3 system exhibits three continuous solid solution series: the hexagonal A-Ln2O3 type (P63/m), the monoclinic M-HfO2 type (P21/c), and an ordered pyrochlore-type phase (Fd3-m), Ln2Hf2O7. The corresponding homogeneity regions border the biphasic fields (M + Py) and (Py + A), respectively. No new phases were found to form under the investigated conditions. The lattice parameter (a) of the ordered pyrochlore-type phase Ln2Hf2O7 varies linearly: from a = 1.0572 nm for a biphasic sample (A + Py) of composition 2 mol% HfO2 – 49 mol% La2O3 – 49 mol% Nd2O3, to a = 1.0696 nm for the solid solution boundary composition, and a = 1.06657 nm for a biphasic sample (Py + M) of composition 65 mol% HfO2 – 17.5 mol% La2O3 – 17.5 mol% Nd2O3.

References

Du, J., Liu, R.-J., Wan, F., Duan, L., Li, J., Wang, Y. (2022) Study on La2(Hf1-xTix)2O7 (x ≤ 0.20) pyrochlores for potential thermal/environmental barrier coating applications. Ceramics International, 48, 671–681. https://doi.org/10.1016/j.ceramint.2022.07.300

Matović, B., Belozerova, N., Kozlenko, D., Zel, Yu., Maletaškić, J., Zagorac, D., Butulija, S., Cvijović-Alagić, I. (2024) High-pressure behaviour of high-entropy A2B2O7 pyrochlore. Ceramics International, 50(24), 52649–52654. https://doi.org/10.1016j.ceramint.2024.10.116

Wang, Z., Zhu, Ch., Wang, H., Wang, M., Liu, Ch., Yang, D., Li, Yu. (2025) Preparation and irradiation stability of A2B2O7 pyrochlore high-entropy ceramic for immobilization of high-level nuclear waste. Journal of Nuclear Materials, 574, 154212. https://doi.org/10.1016/j.jnucmat.2022.154212

Eberman, K.W., Wuensch, B.J., Jorgensen, J.D. (2002). Order–disorder transformations induced by composition and temperature change in (SczYb1-z)2Ti2O7 pyrochlores, prospective fuel cell materials. Solid State Ionics, 148, 521–526. https://doi.org/10.1016/S0167-2738(02)00099-1

Vayer, F., Decorse, C., Bérardan. D., Dragoe, D., Dragoe, N., (2023) Investigation of the chemical versatility in high-entropy pyrochlores. Journal of the American Ceramic Society, 106(4), 2601–2621. https://doi.org/10.1111/jace.18922

Ji, Y., Jiang, D., Fen, T., Shi J., (2005). Fabrication of transparent La2Hf2O7 ceramics from combustion synthesized powders. Materials Research Bulletin, 40, 553–559. https://www.jim.org.cn/EN/10.3724/SP.J.1077.2011.00929

Wang, Z., Zhou, G., Jiang, D., Wang, S. (2018). Recent development of A2B2O7 system transparent ceramics. Journal of Advanced Ceramics, 7(4), 289–306. https://doi.org/10.1007/s40145-018-0287-z

Zou, X.Q., Zhou, G.H., Yi, H.L., Wang Sh., (2011). Fabrication of transparent Y2Hf2O7 ceramic from combustion synthesized powders. Journal of Inorganic Materials, 26, 929–932. https://www.jim.org.cn/EN/10.3724/SP.J.1077.2011.00929

Lehan, J.P., Mao, Y., Bovard, B.G., Macleod, H.A. (1991). Optical and microstructural properties of hafnium dioxide thin films. Thin Solid Films, 203(2), 227–250. https://doi.org/10.1016/0040-6090(91)90131-G

Nishide, T., Honda, S., Matsuura, M., Ide, M. (2000). Surface, structural and optical properties of sol-gel derived HfO2 films. Thin Solid Films, 371(1), 61–65. https://doi.org/10.1016/S0040-6090(00)01010-5

Cheynet, M.C., Pokrant, S., Tichelaar, F.D., Rouvìre, J.L. (2007). Crystal structure and band gap determination of HfO2 thin films. Journal of Applied Physics, 101(5), 054101. https://doi.org/10.1063/1.2697551

Lakiza, S., Hrechaniuk, M., Redko, V., Ruban, O., Tyshchenko, Ya., Makudera, O., Dudnik, O. (2021). [The role of hafnium in modern thermal barrier coatings]. Poroshkova metalurhiia 1/2, 99–109. (in Ukrainian). http://www.materials.kiev.ua/article/3195

McGinnity, T.L., Sokolova, V., Prymak, O., Roeder, R.K. (2021) Colloidal stability, cytotoxicity, and cellular uptake of HfO2 nanoparticles. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 109(10), 1407–1417. https://doi.org/10.1002/jbm.b.34800

Siboro, P.Y., Kumar, A., Lai, P., Jayakumar, J., Mi, F., Chen, H., Chang, Y., Sung, H., (2024). Harnessing HfO2 nanoparticles for wearable tumor therapy and biomedical imaging. ACS Nano, 18(3), 2485–2499. https://doi.org/10.1021/acsnano.3c11346

Wang, X., Wang, D., Liao, Y., Guo, X., Song, Q., Liu, W., Gu, Ch., Du, Sh., Sun, B., Gu, Z. (2025) Hafnium oxide-based sensitizer with radiation-triggered cuproptosis for radiotherapy. Nanotoday, 61, 102626. https://doi.org/10.1016/j.nantod.2024.102626

Wang, J., Pan, J., Tang, Y., Chen, J., Fei, X., Xue, W., Liu, X. (2023) Advances of hafnium based nanomaterials for cancer theranostics. Frontiers in Chemistry, 11, 1283924.

https://doi.org/10.3389/fchem.2023.1283924

Shevchenko A., Lopato L., Zaitseva Z., (1984) Vzaimodeistvie HfO2 s oksidami lantana, prazcodima i neodima pri vysokikh temperaturakh. Neorganicheskie Materialy, 20(9), 1530–1534.

Andrievskaya E. (2010). Phase equilibriums in systems of hafnia, zirconia, and yttria with REE oxides. Monograph, Kyiv: Naukova Dumka.

Duran, P. (1975). Phase relationships in the systems HfO2-La2O3 and HfO2-Nd2O3. Ceramuria International, 1, 10–13. https://doi.org/10.1016/0390-5519(75)90032-0

Glushkova, V., Sozonova, L., Ganits, F. (1978). [System research Nd2O3–HfO2]. Izvestiya AN SSSR. Neorganicheskie materialy, 14(1), 10. (in Russian).

Coutures, J., Sibieude, F., Foex, M. (1976). Etude a haute temperature des systems formes par les sesquioxides de lanthane avec les sesquioxydes de lanthanides II. Influence de la trempe sur la nature des phases obtenues a la temperature ambiante. Journal of Solid State Chemistry, 17(4), 377–384. https://doi.org/10.1016/S0022-4596(76)80006-0

Coutures, J., Rouanet, A., Verges, R., Foex, M., (1976). Etude a haute temperature des systems formes par le sesquioxyde de lanthane et les sesquioxydes de lanthanides. I. Diagrammes de phases (1400 °C < T < T liquide). Journal of Solid State Chemistry, 17(1–2), 172–182. https://doi.org/10.1016/0022-4596(76)90218-8

Zhu, L., Xie, Y., Wang, S., Xiao, Y. (2025). Lanthanum hydroxide showed best application potential in La-based materials based on its stable phosphate adsorption properties in complex water environments. Journal of Environmental Sciences, 152, 465–476. https://doi.org/10.1016/j.jes.2024.05.014

Gao, H., Zhang, D., Li, J., Liu, Q. (2023). Cyanometallate framework templated synthesis of hierarchically porous La(OH)3 for high-efficient and stable phosphorus removal from tailwater. Chemical Engineering Journal, 465, 142789. https://doi.org/10.1016/j.cej.2023.142789

Ismail W. et al., (2024) Investigating the physical and electrical properties of La2O3 via annealing of La(OH)3. Scientific Reports, 14(1), 7716. https://doi.org/10.1038/s41598-024-57848-8

Xi, W., Jian, P., Mao, X., Ning D., Xia X., Liu G., Shi D., Lan, Yu. (2021). Luminescent property of La(OH)3:Eu3+ nanorod and its decomposed compounds of LaOOH and La2O3. Materials Research Express, 105002. https://doi.org/10.1088/2053-1591/ac0eb6

Tian, H., Guo, J., Pei, Y., Hou, S., Wang, Y., Xi, Y. (2024). A synthetic method for lanthanum hydroxychloride suitable for industrialization and its thermal decomposition properties. RSC Advances, 14, 29282–29292.

https://doi.org/10.1039/D4RA03987D

Zhao, Z., Li, Z., Wu, L., Song Ya., Razanajatovo M., Sun Q., Jiao T., Peng Q., Zhang Q., (2023). Rational design of the nanocomposite by in-situ sub-10 nm La(OH)3 formation for selective phosphorus removal in waters. Separation and Purification Technology, 123306. https://doi.org/10.1016/j.seppur.2023.123306

Zhang, Y., Qian, Y., Li, W., Gao, X., Pan, B. (2019). Fluoride uptake by three lanthanum based nanomaterials: Behavior and mechanism dependent upon lanthanum species. Science of the Total Environment, 683, 609–616. https://doi.org/10.1016/j.scitotenv.2019.05.185

Published

2025-12-25

Issue

Section

Physical and inorganic chemistry