QUANTUM-CHEMICAL AND EXPERIMENTAL STUDIES OF THE FEATURES OF INTERMOLECULAR INTERACTIONS IN COMPLEX SYSTEMS «AROMATIC POLYAMIDE-ARAMID FIBER-SILICA GEL»

Authors

DOI:

https://doi.org/10.15421/jchemtech.v33i3.337894

Keywords:

aromatic polyamide, aramid fiber, silica gel, in situ, intermolecular interaction, hydrogen bond, absorption spectrum

Abstract

The article presents the results of quantum-chemical studies of polymer composite materials based on aromatic polyamide modified with silica gel and aramid fiber. Structural models of the initial components with the distribution of electrostatic charges on atoms and the determination of characteristic interatomic distances are proposed. Theoretical models of complexes in the «polyamide-silica gel» system are constructed, reflecting the most probable intermolecular interactions of the polymer matrix with the filler. The reliability of the results is confirmed by IR spectroscopy data. It was established that the main contribution to the stabilization of the polymer-filler structure is provided by the formation of hydrogen bonds between the oxygen atoms of the carbonyl groups of polyamide and hydroxyl groups on the surface of the silica gel. It is shown that composite materials obtained by in situ combining the initial components of polymer compositions showed an improvement in properties of up to 10% in individual parameters compared to materials obtained using traditional technology, which indicates more effective interfacial interaction in these systems.

Author Biography

Andrey V. Tokar, Dnipro state agrarian and economic university

associate professor of department of chemistry

References

Dzhurka, H. F. (2008). [Polymer composite materials: Textbook]. Poltava (in Ukrainian).

Chiechi, R. C., Havenith, R. W. A., Hummelen, J. C., Koster, L. J. A. , Loi, M. A. (2013). Modern plastic solar cells: materials, mechanisms and modeling. Mater. Today, 16(7/8), 281–289. https://doi.org/10.1016/j.mattod.2013.07.003

Kabat, O. S., Kobets, A. S., Derkach, O.D., Makarenko, D.O., Hnatko, O. M. (2024). Practice of using parts made of the heat-resistant polymer composites in the chemical industry and agricultural engineering. ARPN J. Eng. Appl. Sci., 19(1), 40–47. https://doi.org/10.59018/012415

Budnyk, A. F., Yuskaiev, V. B., Budnyk, O. A. (2008). [Non-metallic materials in modern society: Textbook]. Sumy: Vydavnytstvo SumDU (in Ukrainian).

Burya, A. I., Safonova, A. M., Rula, I. V. (2012). Influence of metal-containing carbon fibers on the properties of carbon-filled plastics based on aromatic polyamide. J. Eng. Phys. Thermophys., 85(4), 943–949. https://doi.org/10.1007/s10891-012-0734-6

Savchuk, P. P., Kashytskyi, V. P., Melnychuk, M. D., Sadova O. L. (2017). [Composite and powder materials: Textbook]. Lutsk: Vydavets FOP Telitsyn (in Ukrainian).

Kurta, S. A. (2012). [Fillers – synthesis, properties and uses: Textbook]. Ivano-Frankivsk: Vydavnytstvo Prykarpatskoho natsionalnoho universytetu imeni Vasylia Stefanyka (in Ukrainian).

Bashtannik, P. I., Kabak, A. I. (1999). Influence of technological processing parameters on the properties of carbon filled thermoplastics. Mech. Compos. Mater., 35, 265–270. https://doi.org/10.1007/BF02257259

Mikulonok, I. O. (2020). [Technological basics of processing polymer materials: Textbook]. Kyiv: KPI im I. Sykorkoho (in Ukrainian).

Kurta, S. A., Sulym, I. I. (2021). [Structure and modification of surface by silica-containing compounds: Textbook]. Ivano-Frankivsk: Prykarpatskyi natsionalnyi universytet im. Vasylia Stefanyka (in Ukrainian).

Kabat, O., Boiko, Y. (2025). Polymer-composites based on aromatic polyamide and aramid fiber for heavy-duty friction and sealing units. Chem. Chem. Technol., 19(2), 335–341. https://doi.org/10.23939/chcht19.02.335

Moore, D. F. (1975). Principles and Applications of Tribology, Oxford: Pergamon Press.

Thompson, J. M. (2018). Infrared Spectroscopy. Stanford, USA: Jenny Stanford Publishing. https://doi.org/10.1201/9781351206037

Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J., Fox, D. J. (2013). Gaussian 09 (Revision D.01). Gaussian Inc., Wallingford CT.

Ruipérez, F. (2019). Application of quantum chemical methods in polymer chemistry. Int. Rev. Phys. Chem., 38(3–4), 343–403. https://doi.org/10.1080/0144235X.2019.1677062

Chyhvintseva, O. P., Rula, I. V., Boiko, Yu. V. (2019). [Study of thermal and tribological properties of aromatic polyamides]. Mizhvuzivskyi zbirnyk «Naukovi notatky». Lutsk, 65, 274–280.

Merrick, J. P., Moran, D., Radom, L. (2007). An Evaluation of Harmonic Vibrational Frequency Scale Factors. J. Phys. Chem. A., 111(45), 11683–11700. https://doi.org/10.1021/jp073974n

Sordo, J. A. (2001). On the use of the Boys-Bernardi function counterpoise procedure to correct barrier heights for basis set superposition error. J. Mol. Struct. THEOCHEM, 537(1–3), 245–251. https://doi.org/10.1016/S0166-1280(00)00681-3

Munshi, P., Guru Row, T. N. (2005). Charge density based classification of intermolecular interactions in molecular crystals. CrystEngComm., 7(100), 608–611. https://doi.org/10.1039/B511944H

Zhikol, O. A., Shishkin, O. V., Lyssenko, K. A., Leszczynski, J. (2005). Electron density distribution in stacked benzene dimers: A new approach towards the estimation of stacking interaction energies. J. Chem. Phys., 122(14), 144104. https://doi.org/10.1063/1.1877092

Hill, J. G., Platts, J. A., Werner, H.-J. (2006). Calculation of intermolecular interactions in the benzene dimer using coupled-cluster and local electron correlation methods. Chem. Phys. Phys. Chem., 8(35), 4072–4078. https://doi.org/10.1039/B608623C

Tokar, A., Kabat, O., Chigvintseva, O., Belošević, S. (2021). Intermolecular Interactions in Complex Systems “Polyamide-Silica Gel”: The Quantum-Chemical Interpretation. In: Karabegović, I. (eds). New Technologies, Development and Application IV. NT 2021. Lecture Notes in Networks and Systems, 233, 875–882. https://doi.org/10.1007/978-3-030-75275-0_96

Tokar, A. V., Kabat, O. S. (2020). [The quantum-chemical investigation of intermolecular interactions in complex systems «polyamide-silica gel»]. J. Chem. Technol., 28(2), 194–201 (in Ukrainian). https://doi.org/10.15421/082021

Kabat, O., Sytar, V., Derkach, O., Sukhyy, K. (2021). Рolymeric composite materials of tribotechnical purpose with a high level of physical, mechanical and thermal properties. Chem. Chem. Technol., 15(4), 543–550. https://doi.org/10.23939/chcht15.04.543

Kabat, O., Sytar, V., Heti, K., Artemchuk, V. (2021). Method for obtaining a polymer composite based on aromatic polyamide and silicon dioxide. J. Chem. Technol. Metall., 56(2), 283–288.

Published

2025-10-19