ELECTROSYNTHESIS OF NI-FE FILMS WITH ENHANCED ELECTROCATALYTIC ACTIVITY FOR HYDROGEN EVOLUTION FROM ALKALINE ELECTROLYTE

Authors

  • Mykhailo K. Sukhii Ukrainian State University of Science and Technologies, Scientific and Educational Institute “Ukrainian State Chemical and Technological University" , Ukraine https://orcid.org/0000-0002-4272-3704
  • Iryna V. Sknar Ukrainian State University of Science and Technologies, Scientific and Educational Institute “Ukrainian State Chemical and Technological University" , Ukraine https://orcid.org/0000-0001-8433-1285
  • Tetyana E. Butyrina Ukrainian State University of Science and Technologies, Scientific and Educational Institute “Ukrainian State Chemical and Technological University" , Ukraine https://orcid.org/0000-0002-0619-6783
  • Yuri E. Sknar Ukrainian State University of Science and Technologies, Scientific and Educational Institute “Ukrainian State Chemical and Technological University" , Ukraine https://orcid.org/0000-0002-1188-3684
  • Volodymyr G. Nefedov Ukrainian State University of Science and Technologies, Scientific and Educational Institute “Ukrainian State Chemical and Technological University" , Ukraine https://orcid.org/0009-0001-5335-7738
  • Yuliya V. Polishchuk Ukrainian State University of Science and Technologies, Scientific and Educational Institute “Ukrainian State Chemical and Technological University" , Ukraine https://orcid.org/0000-0003-1552-4117

DOI:

https://doi.org/10.15421/jchemtech.v33i4.341465

Keywords:

hydrogen evolution electrocatalyst, Ni-Fe films, sulfur-containing organic substances, structure, internal stresses

Abstract

The work is devoted to the topical issue of creating electrocatalysts for hydrogen evolution from alkaline electrolyte. The rapid development of hydrogen energy using the electrolytic method of hydrogen requires the use of cheap, resource-intensive and highly catalytic cathode materials. The most variable and flexible in control is the electrochemical method of synthesizing electrocatalysts of this type. A very promising material for cathodic hydrogen release is the Ni-Fe alloy. The limiting factor for its use is the high internal stresses that arise during its electrosynthesis. To reduce the internal stresses of Ni-Fe electrocatalyst films, sulfur-containing modifiers sodium allyl sulfonate and sodium saccharinate were used in this work, which were introduced into the methanesulfonate electrolyte of electrodeposition. It was established that increasing the concentration of sodium allyl sulfonate from 30 to 100 mmol/l leads to a decrease in internal stresses from 300 MPa to 100 MPa. The use of sodium saccharinate in a concentration of 0.5 mmol/l to 6 mmol/l contributes to a decrease in internal stresses from 300 MPa to 0 MPa. This effect of modifiers on internal stresses is associated with a change in the alloy structure due to the incorporation of sulfur and hydrocarbon residues of modifiers. It was found that the Ni-Fe alloy obtained in the presence of allyl sulfonate demonstrates high electroactivity, approaching the electroactivity of platinum. This effect is explained by an increase in defects in the crystal lattice and the presence of nickel and iron sulfide particles in the structure of the cathode material. It is recommended to carry out the electrosynthesis of Ni-Fe, as electrocatalysts for hydrogen evolution, from a methanesulfonate electrolyte containing 80–100 mmol/l of sodium allyl sulfonate in the range of current densities from 3 to 7 A/dm2.

References

Ortiz, M. A., Kurvers, S. R., Bluyssen P. M. (2017). A review of comfort, health, and energy use: understanding daily energy use and wellbeing for the development of a new approach to study comfort. Energy and Buildings, 152(1), 323–335. http://dx.doi.org/10.1016/j.enbuild.2017.07.060.

Ang, T.-Z., Salem, M., Kamarol, M., Das, H. S., Nazari, M.A., Prabaharan, N. (2022). A comprehensive study of renewable energy sources: Classifications, challenges and suggestions. Energy Strategy Reviews, 43, 100939. https://doi.org/10.1016/j.esr.2022.100939.

Hassan, Q., Viktor P., Al-Musawi T. J., Ali, B. M., Algburi, S., Alzoubi, H. M., Al-Jiboory A. K., Sameen, A. Z., Salman, H. M., Jaszczur, M. (2024). The renewable energy role in the global energy Transformations. Renewable Energy Focus, 48, 100545. https://doi.org/10.1016/j.ref.2024.100545.

Haas, R., Duic, N., Auer, H., Ajanovic, A., Ramsebner, J., Knapek, J., Zwickl-Bernhard, S. (2023). The photovoltaic revolution is on: How it will change the electricity system in a lasting way. Energy 265, 126351. https://doi.org/10.1016/j.energy.2022.126351.

Franco, A. (2025). Green Hydrogen and the Energy Transition: Hopes, Challenges, and Realistic Opportunities. Hydrogen, 6(2), 28. https://doi.org/10.3390/hydrogen6020028.

Cardoso, D. S. P., Amaral, L., Santos, D. M. F., Šljukić, B., Sequeira, C. A. C., Macciò, D., Saccone, A. (2015). Enhancement of hydrogen evolution in alkaline water electrolysis by using nickel-rare earth alloys. Int. J. Hydrogen Energy, 40(12), 4295–4302. http://dx.doi.org/10.1016/j.ijhydene.2015.01.174.

Li, R., Li, Y., Yang, P., Wang, D., Xu, H., Wang, B., Meng, F., Zhang, J., An, M. (2021) Electrodeposition: Synthesis of advanced transition metal-based catalyst for hydrogen production via electrolysis of water. J. Energy Chem., 57, 547–566. https://doi.org/10.1016/j.jechem.2020.08.040.

Faid, A. Y., Barnett, A. O., Seland F., Sunde, S. (2018). Highly Active Nickel-Based Catalyst for Hydrogen Evolution in Anion Exchange Membrane Electrolysis. Catalysts, 8, 614. https://doi.org/10.3390/catal8120614.

Luo, M., Yang, J., Li, X., Eguchi, M., Yamauchi, Y., Wang, Z.-L. (2023). Insights into alloy/oxide or hydroxide interfaces in Ni–Mo-based electrocatalysts for hydrogen evolution under alkaline conditions. Chem. Sci., 14, 3400–3414. https://doi.org/10.1039/d2sc06298d.

An, Y.-A., Wu, W., Wang, T., Jiao, Y., Mohammed Y. M., Wang, Q. (2025). Electrodeposition, characterization and properties of Ni–W alloys as an efficient electrocatalyst for the hydrogen evolution reaction in alkaline solution. Int. J. Hydrogen Energy, 142, 376–389. https://doi.org/10.1016/j.ijhydene.2025.05.410.

Navarro-Flores, E., Chong, Z., Omanovic S. (2005). Characterization of Ni, NiMo, NiW and NiFe electroactive coatings as electrocatalysts for hydrogen evolution in an acidic medium. J. Mol. Catal. A:Chem., 226, 179–197. https://doi.org/10.1016/j.molcata.2004.10.029.

Nady, H., El-Rabiei, M. M., Deyab, M. A., Samy, M., El-Hafez, Gh. M. A. (2022). Ni-Cr alloys for effectively enhancing hydrogen evolution processes in phosphate-buffered neutral electrolytes. Int. J. Hydrogen Energy, 47(92), 39030–39046. https://doi.org/10.1016/j.ijhydene.2022.09.053.

Tourneur, J., Perrin, L., Paul, S., Fabre, B. (2024). Optimization of Three-Dimensional-Printed Catalytic Electrodes for Alkaline Water Electrolysis Guided by the Experimental Design Methodology. Energy Fuels, 38(7), 6346–6354. https://doi.org/10.1021/acs.energyfuels.4c00478.

Vij, V., Sultan, S., Harzandi, A. M., Meena, A., Tiwari, J. N., Lee, W. G., Yoon, T., Kim, K. S. (2017). Nickel–Based Electrocatalysts for Energy Related Applications: Oxygen Reduction, Oxygen Evolution, and Hydrogen Evolution Reactions. ACS Catal., 7(10), 7196-7225. https://doi.org/10.1021/acscatal.7b01800.

Mauer, A. E., Kirk, D. W., Thorpe, S. J. (2007). The role of iron in the prevention of nickel electrode deactivation in alkaline electrolysis. Electrochim. Acta, 52(11), 3505–3509. https://doi.org/10.1016/j.electacta.2006.10.037.

Chanda, D., Hnát, J., Paidar, M., Schauer, J., Bouzek K. (2015). Synthesis and characterization of NiFe2O4 electrocatalyst for the hydrogen evolution reaction in alkaline water electrolysis using different polymer binders. J. Power Sources, 285, 217–226. https://doi.org/10.1016/j.jpowsour.2015.03.067.

Ullal, Y, Hegde, A. C. (2014). Electrodeposition and electro-catalytic study of nanocrystalline Nie-Fe alloy. Int. J. Hydrogen Energy, 39(20), 10485–10492. http://dx.doi.org/10.1016/j.ijhydene.2014.05.016.

Suffredini, H.B., Cerne, J.L., Crnkovic, F.C., Machado, S.A.S., Avaca, L.A. (2000). Recent developments in electrode materials for water electrolysis. Int. J. Hydrogen Energy, 25(5), 415–423. https://doi.org/10.1016/S0360-3199(99)00049-X.

Solmaz, R., Kardas, G. E. (2009) lectrochemical deposition and characterization of NiFe coatings as electrocatalytic materials for alkaline water electrolysis. Electrochim. Acta, 54(14), 3726–3734. https://doi.org/10.1016/j.electacta.2009.01.064.

Flis-Kabulska, I., Flis, J. (2016). Electroactivity of Ni–Fe cathodes in alkaline water electrolysis and effect of corrosion. Corros. Sci., 112, 255–263. http://dx.doi.org/10.1016/j.corsci.2016.07.017.

Wu, Y., Ji, B., Wang, W. (2021). Reducing the Internal Stress of Fe-Ni Magnetic Film Using the Electrochemical Method. Processes, 9(11), 1883. https://doi.org/10.3390/pr9111883.

Sekar, R., Jayakrishnan, S. (2012). Effect of sulphonic acids on electrodeposition of nickel and its structural and corrosion behavior. Transactions of the IMF, 90(6), 324–329. https://doi.org/10.1179/0020296712Z.00000000032.

Sknar, Y. E., Amirulloeva, N. V., Sknar, I. V., Danylov, F. I. (2016). Influence of methylsulfonate anions on the structure of electrolytic cobalt coatings, Mater. Sci., 52, 396–401. https://doi.org/10.1007/s11003-016-9970-9.

Sknar, Y. E., Amirulloeva, N. V., Sknar, I. V., Danylov, F. I. (2016). Electrodeposition of Ni-ZrO2 nanocomposites from methanesulfonate electrolytes, Materials Science, 51, 877–884. https://doi.org/10.1007/s11003-016-9916-2.

Sknar, Y., Sknar, I., Cheremysinova, A., Yermolenko, I., Karakurkchi, A., Mizin, V., Proskurina, V., Sachanova, Y. (2017). Research into composition and properties of the Ni-Fe electrolytic alloy. East.-Eur. J. Enterp. Technol., 4(12-88), 4–10. https://doi.org/10.15587/1729-4061.2017.106864.

Mikhailov, I. F., Baturin, A. A., Mikhailov, A. I., Fomina, L.P. (2016). Perspectives of development of X-ray analysis for material composition. Funct. Mater., 23(1), 5–14. https://doi.org/10.15407/fm23.01.005.

Angeles-Olvera, Z., Crespo-Yapur, A., Rodríguez, O., Cholula-Díaz, J.L., Martínez, L.M., Videa, M. (2022). Nickel-Based Electrocatalysts for Water Electrolysis. Energies, 15(5), 1609. https://doi.org/10.3390/en15051609.

Shang, X., Qin, J.-F., Lin, J.-H., Dong, B., Chi, J.-Q., Liu, Z.-Z., Wang, L., Chai, Y.-M., Liu, C.-G. (2018). Tuning the morphology and Fe/Ni ratio of a bimetallic Fe-Ni-S film supported on nickel foam for optimized electrolytic water splitting. J. Colloid Interface Sci., 523, 121–132. https://doi.org/10.1016/j.jcis.2018.03.083

Downloads

Published

2025-12-25