The salting-out of molibdoferrats(II) from aqueous solutions by the organic solvents

Authors

  • Mykola V. Nikolenko Ukrainian State University of Chemical Technology, 8 Gagarin Ave., Dnipropetrovsk, 49005, Ukraine
  • Elena Yu. Vashkevich Ukrainian State University of Chemical Technology, 8 Gagarin Ave., Dnipropetrovsk, 49005, Ukraine
  • Yuri V. Kalashnikov Ukrainian State University of Chemical Technology, 8 Gagarin Ave., Dnipropetrovsk, 49005, Ukraine
  • Vitali A. Solovov Ukrainian State University of Chemical Technology, 8 Gagarin Ave., Dnipropetrovsk, 49005, Ukraine

DOI:

https://doi.org/10.15421/081615

Keywords:

molybdoferrates(II), асetone, solubility, dielectric constant

Abstract

The aim of this work was to develop a method for producing of molybdoferrate(II) precipitates by salting-out them from aqueous solutions by means of organic solvents. Dependence of the composition of molybdoferrate(II) precipitates on the pH of the reaction solutions was studied. Experiments on salting-out of molybdoferrate(II) with various organic solvents were carried out. As a result it was found that the best reagent for the molybdoferrate(II) salting-out is acetone. By its use, lowest quantity of the ammonium sulfate impurities was obtained. It is also of importance that by using of acetone the process of regeneration by distillation of the reaction solutions is characterized by the lowest energy consumption. A functional relationship between the solubility of molybdoferrates(II) and dielectric constant of the medium was established. By increasing the dielectric constant of the solvent solubility of molybdoferrates(II) rapidly increases. The linearized dependence ln(lnS)–ln(1/e) was proposed to predict the solubility of molybdoferrates(II) in various aqueous-organic solutions.

Author Biographies

Mykola V. Nikolenko, Ukrainian State University of Chemical Technology, 8 Gagarin Ave., Dnipropetrovsk, 49005

доктор химических наук, профессор, заведующий кафедрой аналитической химии  и химической технологии пищевых добавок и косметических средств

Elena Yu. Vashkevich, Ukrainian State University of Chemical Technology, 8 Gagarin Ave., Dnipropetrovsk, 49005

кандидат химических наук, доцент, доцент кафедры аналитической химии и химической технологии пищевых добавок и косметических средств

Yuri V. Kalashnikov, Ukrainian State University of Chemical Technology, 8 Gagarin Ave., Dnipropetrovsk, 49005

кандидат технических наук, младший научный сотрудник кафедры аналитической химии и химической технологии пищевых добавок и косметических средств

Vitali A. Solovov, Ukrainian State University of Chemical Technology, 8 Gagarin Ave., Dnipropetrovsk, 49005

аспирант кафедры аналитической химии и химической технологии пищевых добавок и косметических средств

References

Nikolenkо, N. V., Kozhevnikov, I. V., Kostyniuk, A. O., Bayahia, H., & Kalashnykov, Yu. V. (2016). Preparation of iron molybdate catalysts for methanol to formaldehyde oxidation based on ammonium molybdoferrate(II) precursor J. Saudi Chem. Soc. (in the press). doi:10.1016/j.jscs.2016.04.002 CrossRef

Nikolenko, M. V., Kostynyuk, A. O., Goutenoire, F., & Kalashnikov, Yu. V. (2014). Chemical Precipitation of Iron(III) Molybdate + Molybdenum Trioxide Mixtures through Continuous Crystallization. Inorg. Mater., 50(11), 1140–1145. doi:10.1134/S0020168514110120 CrossRef

Kostynyuk, A. O., Gutenuar, F., Kalashnikova, A. N., Kalashnikov, Yu. V., & Nikolenko, N. V. (2014). Kinetics of the Thermal Treatment of an Iron–Molybdenum Catalyst. Kinet. Catal., 55(5), 649–655. doi:10.1134/S0023158414050073 CrossRef

Jin, G., Weng, W., Weng, Z., Dummer, N., Taylor, S., Kiely, C., Bartley, J., & Hutchings, G. (2012). Fe2(MoO4)3/MoO3 nano-structured catalysts for the oxidation of methanol to formaldehyde. J. Catal., 296, 55–64. doi:10.1016/j.cat.2012.09.001 CrossRef

Nikolenko, N. V., Kostynyuk, A. O., Kalashnikov, Yu. V., & Cheremis, E. A. (2012). The Calculation of the Thermodynamic Equilibrium in the System Fe3+/MoO42–/H+(OH)/H2O and Determination of the Reasonable Conditions for the Deposition of Iron Molybdate. Russ. J. Appl. Chem., 85(12), 1814−1819. doi:10.1134/S107042721212004X CrossRef

Bowker, M. (2015). Rules for Selective Oxidation Exemplified by Methanol Selective Oxidation on Iron Molybdate Catalysts. Top. Cat. 58 (10), 606–612. doi:10.1007/s11244-015-0399-4 CrossRef

Bowker, M., Gibson, E. K., Silverwoodad, I. P., & Brookesab, C. (2016). Methanol oxidation on Fe2O3 catalysts and the effects of surface Mo. Faraday Discuss. 188, 387–398. doi:10.1039/C5FD00225G CrossRef

Brookes, C., Bowker, M., & Wells, P. P. (2016). Catalysts for the Selective Oxidation of Methanol. Catalysts, 6, 92–119. doi:10.3390/catal6070092 CrossRef

Pop, M. S. (1990). Heteropoly- and isopolyoxometallates. – Novosibirsk, USSR: Science (in Russian).

Ammam, M. (2013). Polyoxometalates: formation, structures, principal properties, main deposition methods and application in sensing. J. Mater. Chem., 1(21), 6291–6312. doi:10.1039/C3TA01663C CrossRef

Minkin, V. I., Simkin, B. Ya., & Minyaev, R. M. (1990). Quantum Chemistry of Organic Compounds: Mechanisms of Reactions. – Berline, Germany: Springer-Verlag. doi:10.1007/978-3-642-75679-5 CrossRef

Belousov, V. P., & Panov, M. Y. (1983). Thermodynamics of aqueous solutions of nonelectrolytes. − Leningrad, USSR: Chemistry (in Russian).

Hine, J., & Mookerjee, P. K. (1975). Structural effects on rates and equilibriums. XIX. Intrinsic hydrophilic character of organic compounds. Correlations in terms of structural contributions. J. Org. Chem, 40(3), 292–298. doi:10.1021/jo00891a006 CrossRef

Hall, G. G. (1989). The Lennard-Jones lecture. The continuing importance of electrostatics in chemistry. J. Chem. Soc., Faraday Trans. 2, 85(4), 251–260. doi:10.1039/F29898500251 CrossRef

Gadre, S. R., & Bhadane, P. K. (1999). Electrostatics in chemistry 2. Electrostatic potentials of atoms, ions and molecules. Reson., 4(5), 40–51. doi:10.1007/BF02834319 CrossRef

Published

2016-12-31