DETERMINATION OF ASCORBIC ACID IN MIXTURES WITH CYSTEINE USING REDUCTION OF 18-MOLYBDODIPHOSPHATE HETEROPOLY COMPLEX IN PRESENCE OF Bi(III) IONS

Authors

  • Yuliia V. Miekh Дніпровський національний університет імені Олеся Гончара, Ukraine
  • Andriy B. Vishnikin Oles Honchar Dnipro National University, Ukraine
  • Nataliya A. Tovstonog Дніпровський національний університет імені Олеся Гончара,
  • Tatyana A. Denisenko Дніпровський національний університет імені Олеся Гончара,
  • Halyna O. Petrushyna Дніпровський державний аграрно-економічний університет,

DOI:

https://doi.org/10.15421/081929

Keywords:

ascorbic acid, cysteine, spectrophotometry, 18-molybdodiphosphate, simultaneous determination.

Abstract

A spectrophotometric method was developed for the determination of ascorbic acid in mixtures with cysteine using the reduction of 18-molybdodiphosphate heteropoly complex. In order to decrease the influence of the 18-molybdodiphosphate reduction with cysteine, the pH of the reaction was shifted to the acidic region to 1.0 – 2.2. Under these conditions, in the presence of bismuth(III) ions, as a result of the formation of a metal-substituted heteropoly complex, the reaction rate of 18-molybdodiphosphate with ascorbic acid increases and, at pH from 1.8 to 2.2, the reduction reaction is completely shifted towards the formation of heteropoly blue and ends in less than 5 minutes. Cysteine in this pH region reacts with 18-molybdodiphosphate very slowly, but has an indirect effect on the reaction of ascorbic acid with 18-molybdodiphosphate, probably due to the binding of bismuth(III) ions. It was shown that the determination of ascorbic acid is possible with satisfactory accuracy if the excess of cysteine with respect to ascorbic acid does not exceed three times. The calibration graph for the determination of ascorbic acid at pH 1.8 and concentrations of 18-molybdodiphosphate and bismuth(III) 5∙10-5 mol∙L-1 and 1∙10-4 mol∙L-1, respectively, is linear in the range from 2.5∙10-6 to 2.5∙10-5 with a detection limit of 8∙10-7 mol∙L-1 (l = 5 cm). The accuracy of the method was evaluated by the added-found method on model mixtures.

Author Biographies

Yuliia V. Miekh, Дніпровський національний університет імені Олеся Гончара

Молодший науковий співробітник Інституту хімії та геології ДНУ

Andriy B. Vishnikin, Oles Honchar Dnipro National University

Head of Analytical Chemistry Department h-index (SCOPUS) = 8

Nataliya A. Tovstonog, Дніпровський національний університет імені Олеся Гончара

Магістр 6 курс

Tatyana A. Denisenko, Дніпровський національний університет імені Олеся Гончара

Доцент кафедри фізичної, неорганічної та органічної хімії ДНУ

Halyna O. Petrushyna, Дніпровський державний аграрно-економічний університет

Доцент

References

Novakova, L., Solich, P., Solichova, S. (2008). HPLC methods for simultaneous determination of ascorbic and dehydroascorbic acids. Trends Anal. Chem, 27(10), 942–958. https://doi.org/10.1016/j.trac.2008.08.006

Spinola, V., Llorent-Martinez, E. J., Castillo, P. C. (2014). Determination of vitamin C in foods: Current state of method validation. J. Chromatogr. A., 1369, 2–17. https://doi.org/10.1016/j.chroma.2014.09.087

Pisoschi, A., Pop, M. A., Negulescu, G. P., Pisoschi, A. (2011). Determination of ascorbic acid content of some fruit juices and wine by voltammetry performed at Pt and carbon paste electrodes. Molecules, 16, 1349–1365. https://doi.org/10.3390/molecules16021349

Yebra-Biurrun, M. C. (2000). Flow injection determination methods of ascorbic acid. Talanta, 52, 367–383. https://doi.org/10.1016/S0039-9140(00)00402-1

Zaporozhets, O. A., Krushinskaya, E. A. (1998). Determination of ascorbic acid by molecular spectroscopic techniques. J. Anal. Chem., 57(4), 286–297. https://doi.org/10.1023/A:101493801195

Arya, S. P., Mahajan, M., Jain, P. (1998). Photometric methods for the determination of vitamin C. Anal. Sci., 14, 889–895. https://doi.org/10.2116/analsci.14.889

Ammam, M., Easton, E. B. (2011). Selective determination of ascorbic acid with a novel hybrid material based 1-butyl-3-methylimidazolium tetrafluoroborate ionic liquid and the Dawson type ion [P2Mo18O62]6− immobilized on glassy carbon. Electrochim. Acta, 56, 2847–2855. https://doi.org/10.1016/j.electacta.2010.12.072

Ghasemi, J., Seifi, S., Sharifi, M., Ghorbani, R., Amini, A. (2004). Simultaneous kinetic spectrophotometric determination of ascorbic acid and L -cysteine by H-point standard addition method. Microchim. Acta, 148, 259–265. https://doi.org/10.1007/s00604-004-0270-y

Vishnikin, A., Miekh, Yu., Denisenko, T., Bazel, Ya., Andruch, V. (2018). Use of sequential injection analysis with lab-at-valve and optical probe for simultaneous spectrophotometric determination of ascorbic acid and cysteine by mean centering of ratio kinetic profiles. Talanta, 188(1), 99-106. https://doi.org/10.1016/j.talanta.2018.05.056

Vishnikin, A. B., Sklenařova, H., Solich, P., Petrushina, G. A., Tsiganok, L. P. (2011). Determination of ascorbic acid with Wells-Dawson type molybdophosphate in sequential injection system. Anal. Lett., 44(1–3), 514–527. https://doi.org/10.1080/00032719.2010.500789

Vishnikin, A. B., Al-Shwaiyat, M. K. E. A., Petrushina, G. A., Tsiganok, L. P., Andruch, V., Bazel, Ya. R., Sklenarova, H., Solich, P. (2012). Highly sensitive sequential injection determination of p-aminophenol in paracetamol formulations with 18-molybdodiphosphate heteropoly anion based on elimination of Schlieren effect. Talanta, 96, 230–235. https://doi.org/10.1016/j.talanta.2012.02.049

Bulatov, A. V., Petrova, A. V., Vishnikin, A. B., Moskvin, A. L., Moskvin, L. N. (2012). Stepwise injection spectrophotometric determination of epinephrine. Talanta, 96, 62–67. https://doi.org/10.1016/j.talanta.2012.03.059

Bulatov, A. V., Petrova, A. V., Vishnikin, A. B., Moskvin, L. N. (2013). Stepwise injection spectrophotometric determination of cysteine in biologically active supplements and fodders. Microchem. J., 110, 369–373. https://doi.org/10.1016/j.microc.2013.04.020

Petrushina, G. A., Tsiganok, L. P., Vishnikin, A. B., Bazel, Ya. R. (2012). [Simultaneous determination of ascorbic acid and nitrite in meat products]. Methods Objects Chem. Anal., 7(1), 45–51 (in Russian).

Al-Shwaiyat, M. K. E. A., Miekh, Y. V., Denisenko, T. A., Vishnikin, A. B., Andruch, V., Bazel, Ya. R. (2018). Simultaneous determination of rutin and ascorbic acid in a sequential injection lab-at-valve system. J. Pharm. Biomed. Anal., 149, 179–184. https://doi.org/10.1016/j.jpba.2017.11.006

Al-Shwaiyat, M. K. E. A., Denisenko, T., Miekh, Y., Vishnikin, A. (2018). Spectrophotometric determination of polyphenols in green teas with 18-molybdodiphosphate. Chem. Chem. Technol., 12(2), 135–142. https://doi.org/10.23939/chcht12.02.135

Teshima, N., Nobuta, T., Sakai, T. (2001). Simultaneous flow injection determination of ascorbic acid and cysteine using double flow cell. Anal. Chim. Acta, 438, 21-29. https://doi.org/10.1016/S0003-2670(00)01366-0

Rezaei, B., Ensafi, A. A., Noroozi, S. (2005). Flow-injection determination of ascorbic acid and cysteine simultaneously with spectrofluorimetric detection. Anal. Sci., 21, 1067-1071. https://doi.org/10.2116/analsci.21.1067

Li, B., Wang, D., Xu, C., Zhang, Z. (2005). Flow-injection simultaneous chemiluminescence determination of ascorbic acid and L-cysteine with partial least squares calibration. Microchim. Acta, 149, 205-212. https://doi.org/10.1007_s00604-005-0325-8

Yao, X., Wang, Y., Chen, G. (2007). Simultaneous determination of aminothiols, ascorbic acid and uric acid in biological samples by capillary electrophoresis with electrochemical detection. Biomed. Chromatogr. 21, 520-526. https://doi.org/10.1002/bmc.787

Khan, M. I., Iqbal, Z. (2011). Simultaneous determination of ascorbic acid, aminothiols, and methionine in biological matrices using ion-pairing RP-HPLC coupled with electrochemical detector. J. Chromatogr. B, 879, 2567-2575. https://doi.org/10.1016/j.jchromb.2011.07.013

Ghasemi, J., Seraji, H.R., Noroozi, M., Hashemi, M., Jabbari, A. (2004). Differential kinetic spectrophotometric determinations of ascorbic acid and l-cysteine by partial least squares method. Anal. Lett. 37, 725-737. https://doi.org/10.1081/AL-120029748

Petrushina, G. A. (2014). [Spectrophotometric determination of ascorbic acid by using bismuth containing 18-molybdodiphosphate]. Bull. Dnipropetrovsk Univ. Ser. Chem., 22(1), 36–44 (in Ukrainian). http://chemistry.dnu.dp.ua/article/view/081405

Vishnikin, A. B. Svinarenko, T.Ye., Sklenářová, H., Solich, P., Bazel, Ya. R., Andruch, V. (2010). 11-Molybdobismuthophosphate - a new reagent for the determination of ascorbic acid in batch and sequential injection systems. Talanta, 80(5), 1838–1845. https://doi.org/10.1016/j.talanta.2009.10.031

Published

2020-01-21