PHASE RELATIONS IN THE SYSTEM TERNARY BASED ON CERIA, ZIRCONIA AND YTTERBIA AT 1500 °С

Authors

  • Oksana A. Kornienko Frantsevich Institute for Problems of Materials Science, NAS of Ukraine, Ukraine
  • Olena R. Andrievskaya Frantsevich Institute for Problems of Materials Science, NAS of Ukraine, Ukraine
  • Hanna. K. Barshchevskaya Frantsevich Institute for Problems of Materials Science, NAS of Ukraine, Ukraine

DOI:

https://doi.org/10.15421/082015

Keywords:

phase equilibrium, phase diagram, solid solution, lattice parameter.

Abstract

Based on the results of studying the synthesized samples by X-ray phase analysis, the isothermal section of the ZrO2-CeO2-Yb2O3 system at 1500 °C has been constructed. In this temperature new ordering of intermediate phases was not confirmed. It was established that in the system there exist fields of solid solutions based on tetragonal (Т) modification ZrО2, cubic (С) modification Yb2O3 and cubic with fluorite-type structure (F) modifications СеО2 (ZrО2), as well as intermediate phase with orhombohedral structure Zr3Yb4O12 (δ) were determined. The maximal solubility of ceria in d- phase is 12 mol. % be along the section CeO2–(60 mol % ZrO2–40 mol % Yb2O3). The refined lattice parameters of the unit cells for solid solutions of compositions for the systems were determined. In the zirconia-rich corner, the solid solutions based on tetragonal modification of ZrO2 are formed. The solubility of Yb2O3 in the T-ZrO2 is low and amounts to ~0.5 mol %, as evidenced by XRD analysis results. The solid solutions based on tetragonal modification of zirconia cannot be quenched from high temperatures due to low stability of T-ZrO2 under cooling with furnace conditions. The diffraction patterns recorded at room temperatures included the peaks of monoclinic phase M-ZrO2. The lattice parameters of the intermediate phase with orhombohedral structure Zr3Yb4O12 (δ) vary from а = 0.9654  nm, с = 0.8935 nm for the composition, containing 59.4 mol % ZrО2–1 mol. % CeО2–39.6 mol % Yb2O3 to а = 0.9742 nm, с = 0.9012 mn for the composition (F + δ), containing 51 mol % ZrO2–15 mol % СеO2-34 mol % Yb2O3 and to а = 0.9759 nm, с = 0.9028 nm for the composition (F + С + δ), containing 48 mol % ZrO2–20 mol % СеO2-32 mol % Yb2O3. The isothermal section of the ZrO2-CeO2-Yb2O3 system at 1500 °С contains one three-phase region (F+C+δ), four single-phase regions (F-CeO2(ZrO2), T-ZrO2, δ, C-Yb2O3) and four two-phase regions (C+F, C+δ, F+δ, F+T).

Author Biographies

Oksana A. Kornienko, Frantsevich Institute for Problems of Materials Science, NAS of Ukraine

завідувач відділом "Функціональної кераміки на основі рідкісних земель"

Olena R. Andrievskaya, Frantsevich Institute for Problems of Materials Science, NAS of Ukraine

померла

Hanna. K. Barshchevskaya, Frantsevich Institute for Problems of Materials Science, NAS of Ukraine

провідний інженер

References

Haladzhun, Z., Trishchuk, O., Figol, N., Volyk, N., Bandazheuski, Y., Dubovaya, N. (2020). Phase equilibria in the Systems with ZrO2, CeO2 and Dy2O3. Innovative scientific researches: European development trends and regional aspect. – 4th ed. – Riga, Latvia : “Baltija Publishing”, 260, ISBN: 978-9934-588-38-9 https://doi.org/10.30525/978-9934-588-38-9-58.

Andrievskaya, E.R., Kornienko, O.A., Bykov, A.I., Sameluk, A.V. (2020). Phase Equilibria in the ZrO2–La2O3–Gd2O3 System at 1600°C. Powder Metall. Met. Ceram. 58(11/12), 714–724.

https://doi.org/10.1007/s11106-020-00128-7.

Bahamirian, M., Hadavi, S.M.M., Farvizi, M., Keyvani, A., Rahimipour, M.R. (2020). ZrO2 9.5Y2O3 5.6Yb2O3 5.2Gd2O3; a promising TBC material with high resistance to hot corrosion. J. of Asian Ceram. Societ. https://doi.org/I: 10.1080/21870764.2020.1793474.

Mustafa, KAPLAN , Mehmet Faruk EBEOĞLUGİL , Işıl BİRLİK, Recep YİGİT, Erdal ÇELİK and Eşref AVCİ High (2014) Temperature Yb2O3-ZrO2 Insulation Coatings on Ag Tapes for Magnet Technology. Afyon Kocatepe University Journal of Science and Engineering 14, 117-128.

Kornienko, O. (2019). Phase relations studies in the ZrO2-CeO2-Dy2O3 system at 1500 °C. Odesa National University Herald. Chemistry. 24, 2 (70), P 71-83. https://doi.org/10.18524/2304947.2019.2(70).169231

Yoshimura, M., Tani, E., Somiya, S. (1981). The confirmation of phase equilibria in the system ZrO2 -CeO2 below 1400 °C. Solid State Ionics. 3/4, 477–481.

Tani E., Yoshimura M., Somiya S. (1983). Revised phase diagram of the system ZrO2 -CeO2 below 1400 °C. J. Am. Ceram. Soc. 66 (7), 506–510.

Duran P., Gonzales M., Moure C., Jurado J.R., Pascual C. (1990). A new tentative phase equilibrium diagram for the ZrO2 - CeO2 system in air. J. Mater. Sci. 25, 5001–5006.

Mandal, B. P. (2007). X-Ray diffraction and raman spectroscopic Investigation on the phase relation in Yb2O3- and Tm2O3- substituted CeO2. J. of Amer. Soc. 90 (9), 2961 – 2965.

Adachi, G., Imanaka, N. (1998). The binary rare earth oxides. Chemical Reviews. 1479 – 1514.

Аndrievskaya, E. R., Kornienko, O. A., Bykov, O. І., Sameliu, A. V., Bohatyriova Z. D. (2019). Interaction of ceria and ytterbia in air within temperature range 1500 –600 °C. J. of the Europ. Ceram. Soc. 39, 2930–2935.

Kornienko, O.A. (2016). Interaction of the ceria with ytterbia at temperature 1100 °С Bulletin of Dnipropetrovsk University. Series Chemistry. 24(2), 94–101.

Thormber, M.R., Bevan, D.J.M. (1970). Summerville E. Mixed oxides of hte typy MO2 (fluorite) – M2O3 very phase studies in the system ZrO2-M2O3 (M=Sc, Yb, Er, Dy). J.Solid State Chem. 1, P.545–553.

Rouanet, A. (1971). Contribution a l’etude des systemes zirconia - oxydes des lanthanides au voisinage de la fusion: Мemoire de these. Rev. Intern. Hautes Temper. et Refract. 8 (2), 161-180.

Fabrichnaya, O., Seifert, H. J. (2010). Thermodynamic assessment of the ZrO2–Yb2O3–Al2O3 system. Calphad. 34, 206–214.

Angeles-Chavez, C., Salas, P., Díaz-Torres, L.A., E. de la Rosa, Esparza, R., Perez, R. (2009). Structural and Chemical Characterization of Yb2O3-ZrO2 System by HAADF-STEM and HRTEMC. Microsc. Microanal. 15, 46–53.

Corman G. S., Stubican V. S. (1985). Phase Equilibria and Ionic Conductivity in the System ZrO2−Yb2O3−Y2O3. J. of the Amer. Ceram. Soc. 68 (4), 174–181. DOI: 10.1111/j.1151-2916.1985.tb15293.x

Lopato L. M., Red’ko V. P., Gerasimuk G. I. (1990). Synthesis of some tsirkanatov (gafnata) REE. Powder Metall. and Metal Ceram. 4, 73-75.

Lakiza S. M., Red’ko V. P., Lopato L. M. (2008). The Al2O3–ZrO2–Yb2O3 phase diagram. I. Isothermal sections at 1250 and 1650°C. Powder Metall. and Metal Ceram. 47 (3/4), 60–69. https://doi.org/10.1007/s11106-008-9006-6

Ilatovskaia M., Sun S., Saenko I.,. Savinykh G, Fabrichnaya O. (2020) Experimental Investigation of Phase Relations in the ZrO2-La2O3-Yb2O3 System J. Phase Equilib. Diffus. 41, 311–328 https://doi.org/10.1007/s11669-020-00790-9.

Fabrichnaya O., Lakiza S.M., Kriegel M.J., Seidel J., Savinykh G., Schreiber G. (2015) New Experimental Investigations of Phase Relations in the Yb2O3-Al2O3 and ZrO2-Yb2O3-Al2O3 Systems and Assessment of Thermodynamic Parameters J. Eur. Ceram. Soc. 35, 2855–2871. https://doi.org/10.1016/j.jeurceramsoc.2015.03.037

Lakiza S. M.,. Red’ko V. P., Lopato L. M. (2008). Physicochemical materials research Al2O3–ZrO2–Yb2O3 Phase diagram. IV. Vertecal sections. Powder Metall. and Metal Ceram. 47 (9/10), 577–585.

Stolyarova V.L., Lopatin S.I., Fabrichnaya O.B., Shugurov S.M. (2014) Mass Spectrometric Study of Thermodynamic Properties in the Yb2O3-ZrO2 System at High Temperatures. Rapid Commun. Mass Spectrom. 28, 109–114.

Gonzalez M., Moure C., Jurado J. R., Duran P. (1993). Solid-state reaction, microstructure and phase relations in the ZrO2-rich region of the ZrO2-Yb2O3 system. J. Mater. Sci. 28, 3451–3456. DOI: 10.1007/BF01159821

Kornienko O.A., Andrievskaya O.R., Bykov O.I., Bohaturyva J. D. (2018). Phase equilibria in the ZrO2 –Yb2O3 system at 1100 °C. Odesa National University Herald. Chemistry. 23( 1), 83–95.

Published

2020-10-13

Issue

Section

Physical and inorganic chemistry