STRUCTURE AND CORROSION PROPERTIES OF QUASICRYSTALLINE Al–Ni–Co AND Al–Ni–Fe ALLOYS IN AQUEOUS ACIDIC SOLUTIONS
DOI:
https://doi.org/10.15421/jchemtech.v29i3.233588Keywords:
as-cast quasicrystalline alloys; decagonal quasicrystals; structure; acidic media; corrosion resistanceAbstract
The structure and corrosion properties of as-cast quasicrystalline Al72Fe15Ni13 and Al72Co18Ni10 alloys in acidic media were studied in this work. The structure was investigated by the methods of quantitative metallography, X-ray analysis, scanning electron microscopy, and energy-dispersive X-ray spectrometry. Corrosion resistance was evaluated by gravimetric method in aqueous acidic solutions of HCl, H2SO4, HNO3, and H3PO4 (рН=1.0). Both the investigated alloys were shown to form stable decagonal quasicrystalline D-phases. In the Al72Co18Ni10 alloy, the D-phase is a primarily solidified phase but, in the Al72Fe15Ni13 alloy, the D-phase is formed peritectically. Depending on the alloy composition, two types of decagonal quasicrystals were observed that belong in Al72Fe15Ni13 and Al72Co18Ni10 alloys, respectively, to Al86Fe14- and Al73Co27-based compounds alloyed with Ni. The Al72Fe15Ni23 alloy exhibits the highest resistance to corrosion in the nitric acidic solution, but the Al72Co18Ni10 alloy – in chloric, orthophosphoric, and sulphuric acidic solutions (in descending order). For both alloys, in the most solutions, relatively uniform dissolution of the alloys’ surface is observed except for the more defective areas that dissolve at a higher rate.
References
Stadnik, Z. M. (1999). Physical Properties of Quasicrystals. Berlin Heidelberg: Springer-Verlag. https://doi.org/10.1007/978-3-642-58434-3.
Sukhova, О. V., Ustinova, K. V. (2019). The Effect of Cooling Rate on Phase Composition of Quasicrystalline Al–Cu–Fe Alloys Doped with Si and B. Funct. Mater., 26(3), 495–506.
https://doi.org/10.15407/fm26.03.495.
Huttunen-Saarivirta, E. (2004). Microstructure, Fabrication and Properties of Quasicrystalline Al–Cu–Fe Alloys: A Review. J. Alloys Compd., 363(1–2), 150–174. https://doi.org/10.1016/S0925-8388(03)00445-6.
Trebin, H. R. (2003). Quasicrystals: Structure and Physical Properties. Weinheim: Wiley-VCH Verlag GmbH & Co. https://doi.org/10.1002/3527606572.
Sukhova, О. V., Polonskyy, V. A., Ustinova, K. V. (2018). Microstructure and Corrosion Properties of Quasicrystal Al–Cu–Fe Alloys Alloyed with Si and B in Acidic Solutions. Voprosy Khimii i Khimicheskoi Tekhnologii, 121(6), 77–83.
https://doi.org/10.32434/0321-4095-2018-121-6-77-83.
Sukhova, О. V., Polonskyy, V. A., Ustinova, K. V. (2018). Influence of Si and B on Structure and Corrosion Properties of Quasi-Crystalline Al–Cu–Fe Alloys in Solutions of Salts. Metallofiz. Noveishie Tekhnol., 40(11), 1475–1487.
https://doi.org/10.15407/mfint.40.11.1475.
Sukhova, O. V., Polons’kyi, V. A., Ustinova, K. V. (2019). Corrosion Resistance of Alloys of the Al–Cu–Fe–(Si, B) System in Mineralized Saline and Acid Solutions. Mater. Sci., 55(2), 285–292. https://doi.org/10.1007/s11003-019-00302-2.
Rampulla, D. M., Mancinelli, C. M., Brunell, I. F., Gellman, A. J. (2005). Oxidative and Tribological Properties of Amorphous and Quasicrystalline Approximant Al–Cu–Fe Thin Films. Langmuir, 21(10), 4547–4553. https://doi.org/10.1021/la0469093.
Guedes de Lima, B. A., Gomes, R. G., Guedes de Lima, S. J., Dragoe, D., Barthes-Labrousse, M. G., Kouitat-Njiwa, R., Dubois, J. M. (2016). Self-Lubricating, Low-Friction Wear-Resistant Al-Based Quasicrystalline Coatings. Sci. Technol. Adv. Mater., 17(1), 71–79. https://doi.org/10.1080/14686996.2016.1152563.
Wolf, W., Bolfarini, C., Kiminami, C. S., Botta, W. J. (2021) Recent Developments on Fabrication of Al-Matrix Composites Reinforced with Quasicrystals: From Metastable to Conventional Processing. J. Mater. Res., 36, 281–297. https://doi.org/10.1557/s43578-020-00083-4.
Jithesh, K., Prabhu, T. R., Anant, R. V., Arivarasu, M., Srinivasan, A., Mishra, R. K., Arivazhagan, N. (2019). An Overview of Quasicrystal Reinforced Magnesium Metal Matrix Composites. Mater. Sci. Forum., 969, 218–224. https://doi.org/10.4028/www.scientific. net/MSF.969.218.
Sukhova, О. V., Syrovatko, Yu. V. (2011). Features of Structurization of Composite Materials of the Solution-and-Diffusion Type. Metallofiz. Noveishie Tekhnol., 33(Special Issue), 371–378.
Kamalnath, M., Mohan, B., Singh, A., Thirumavalavan, K. (2020). Development of Al1070 Quasicrystal (Al65Cu23Fe12) Composites Using Friction Stir Processing and Its Mechanical Characterization. Mater. Res. Express, 7(2), 1–11. https://doi.org/10.1088/2053-1591/ab71c5.
Ryabtsev, S. I., Polonskyy, V. A., Sukhova, O. V. (2020) Effect of Scandium on the Structure and Corrosion Properties of Vapor-Deposited Nanostructured Quasicrystalline Al–Cu–Fe Films. Powder Metall. Met. Ceram, 58(9–10), 567–575. https://doi.org/10.1007/s11106-020-00111-2.
Spyrydonova, I. М., Sukhova, O. V., Zinkovskij, G. V. (2012). Thin films and composites based on quasicrystal Al–Cu–Fe alloy. Metallurgical and Mining Industry, 4(4), 2–5.
Posuvailo, V. M., Kulyk, V. V., Duriagina, Z. A., Koval’chuck, I. V., Student, M. M., Vasyliv, B. D. (2020) The Effect of Electrolyte Composition on the Plasma Electrolyte Oxidation and Phase Composition of Oxide Ceramic Coatings Formed on 2024 Aluminium Alloy. Arch. Mater. Sci. Eng., 105(2), 49–55. https://doi.org/10.5604/01.3001.0014.5761.
Kovbasiuk, T. M., Selivorstov, V. Yu., Dotsenko, Yu. V., Duriagina, Z. A., Kulyk, V. V., Kasai, O. M., Voitovych, V. V. (2020) The Effect of the Modification by Ultrafine Silicon Carbide Powder on the Structure and Properties of the Al–Si Alloy. Arch. Mater. Sci. Eng., 101(2), 57–62. https://doi.org/10.5604/01.3001.0014.1191.
Vasyliv, B., Kulyk, V., Duriagina, Z., Mierzwinski, D., Kovbasiuk, T., Tepla, T. (2020) Estimation of the Effect of Redox Treatment on Microstructure and Tendency to Brittle Fracture of Anode Materials of YSZ–NiO(Ni) System. Eastern-European J. Enterp. Technol., 108(6), 67–77. https://doi.org/10.15587/1729-4061.2020.218291.
Mora, J., Garcia, P., Muelas, R., Aguero, A. (2020) Hard Quasicrystalline Coatings Deposited by HVOF Thermal Spray to Reduce Ice Accretion in Aero-Structures Components. Coatings, 10(3), 290–297. https://doi.org/ 10.3390/coatings10030290.
Spiridonova, I. M., Sukhova, О. V., Vashchenko, A. P. (1999) Multicomponent Diffusion Processes in Boride-Containing Composite Materials. Metallofiz. Noveishie Tekhnol., 21(2), 122–125.
Sukhova, О. V. (2020) The Effect of Carbon Content and Cooling Rate on the Structure of Boron-Rich Fe–B–С Alloys. Phys. Chem. Solid St., 21(2), 355–360. https://doi.org/10.15330/pcss.21.2.355-360.
Spiridonova, I. М., Sukhovaya, E. V., Balakin, V. P. (1996) Structure and Deformation Peculiarities of Fe(B,C) Crystals. Metallurgia, 35(2), 65–68.
Zou, Y., Wheeler, J. M., Sologubenko, A. S., Michler, J., Streurer, W., Spolenak, R. (2016) Bridging Room-Temperature and High-Temperature Plasticity in Decagonal Al–Ni–Co Quasicrystal by Microthermomechanical Testing. Phil. Mag., 96(32–34), 3356–3378. https://doi.org/10.1080/14786435.2016.1234722.
Jamshidi, L. C., Bodbari, R. J. (2018). Evolution of the Phases of Quasicrystalline Alloys Icosahedral/Decagonal Al62.2Cu25.3Fe12.5/Al65Ni15Co20 and Oxidative Behavior. J. Chilean Chem. Soc., 63(2), 3928–3933. https://doi.org/10.4067/s0717-97072018000203928.
Hiraga, K., Ohsuna, T., Sun, W., Sugiyama, K. (2002). The Structural Characteristics of Al–Co–Ni Decagonal Quasicrystals and Crystalline Approximants. J. Alloys Compd., 342(1–2), 110–114.
https://doi.org/10.1016/S0925-8388(02)00153-6.
Singh, V. K., Barman, S. R. (2020.) Study of Single Grain Decagonal Al–Ni–Co Quasicrystal Surface. AIP Conf. Proc., 2265, 1–7. https://doi.org/10.1063/5.0016759.
Nejadsattari, F., Stadnik, Z. M., Przewoznik, J., Grushko, B. (2016) Messbauer Spectroscopy, Magnetic and Ab-Initio Study of the Approximant Al76Ni9Fe15 to a Decagonal Al–Ni–Fe Quasicrystal. J. Alloys Compd., 662(1–2), 612–620. https://doi.org/10.1016/ j.jallcom.2015.12.115.
Setyawan, A. D., Louzguine, D. V., Sasamori, K., Kimura, H. M., Ranganathan, S., Inoue, A. (2005). Phase Composition and Transformation Behavior of Rapidly Solidified Al–Ni–Fe Alloys in -Al-Decagonal Phase Region. J. Alloys Compd., 399(1–2), 132–138. https://doi.org/10.1016/ j.jallcom.2005.03.20.
Hiraga, K., Park, K. T. (1996). High Resolution Electron Microscopy of Al–Ni–Fe Decagonal Quasicrystal. J. Mater. Res., 11(7), 1702–1705. https://doi.org/10.1557/JMR.1996.0213.
Wolf, W., Bolfarini, C., Kiminami, C. S., Botta, W. J. (2020). Designing New Quasicrystalline Compositions in Al-Based Alloys. J. Alloys Compd. 823(1–2), 1–6. https://doi.org/10.1016/j.jallcom.2020.
Bindi, L., Yao, N., Lin, C., Hollister, L. S., Andronicos, C. L., Distler, V. V., Eddy, M. P., Kostin, A., Kryachko, V., MacPherson, G. J., Steinhard, W. M., Yudovskaya, M. P., Steinhard, L. (2015). Natural Quasicrystal with Decagonal Symmetry. Sci. Rep., 5, 1–5. https://doi.org/10.1038/srep09111.
Zou, Y., Kuczera, P., Wolny, J. (2016). Fitting the Long-Range Order of a Decagonal Quasicrystal. Acta Phys. Pol. A, 130(4), 845–847.
https://doi.org/10.12693/aphyspola.130.845.
Luca, B., Pham, J., Steinhardt, P. J. (2018). Previously Unknown Quasicrystal Periodic Approximant Found in Space. Sci. Rep., 8, 1–8. https://doi.org/10.1038/s41598-018-34375-x.
Sukhova, О. V., Syrovatko, Yu. V. (2019). New Metallic Materials and Synthetic Metals. Metallofiz. Noveishie Tekhnol., 41(9), 1171–1185. https://doi.org/10.15407/mfint.41.09.1171.
Zhu, M., Yang, G., Yao, L., Cheng, S., Zhou, Y. (2010). Microstructure and Mechanical Properties of Al-Base Composites by Addition of Al–Ni–Co Decagonal Quasicrystalline Particles Through a Mechanical Stirring Route. J. Mater. Sci., 45(14), 3727–3734. https://doi.org/10.1007/s10853-010-4421-8.
Babilas, R., Mlynarek, K., Lonski, W., Lis, M., Lukowiec, D., Kadziolka-Gawel, M., Warski, T., Radon, A. (2021). Analysis of Thermodynamic Parameters for Designing Quasicrystalline Al–Ni–Fe Alloys with Enhanced Corrosion Resistance. J. Alloys Compd., 868(1–2), 1–9. https://doi.org/10.1016/j.jallcom.2021.159241.
Sukhova, О. V., Polonskyy, V. A., Ustinova, K. V. (2017). Structure Formation and Corrosion Behaviour of Quasicrystalline Al–Ni–Fe Alloys. Phys. Chem. Solid St., 18(2), 222–227.
Downloads
Published
Issue
Section
License
Copyright (c) 2021 Днипровский национальный университет имени Олеся Гончара
This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors reserve the right of attribution for the submitted manuscript, while transferring to the Journal the right to publish the article under the Creative Commons Attribution License. This license allows free distribution of the published work under the condition of proper attribution of the original authors and the initial publication source (i.e. the Journal)
- Authors have the right to enter into separate agreements for additional non-exclusive distribution of the work in the form it was published in the Journal (such as publishing the article on the institutional website or as a part of a monograph), provided the original publication in this Journal is properly referenced
- The Journal allows and encourages online publication of the manuscripts (such as on personal web pages), even when such a manuscript is still under editorial consideration, since it allows for a productive scientific discussion and better citation dynamics (see The Effect of Open Access).