MODELING OF THE TECHNOLOGICAL PROCESS OF SULFUR DIOXIDE OXIDATION USING THE CHEMCAD PROGRAM

Authors

  • Michael A. Podzharsky Oles Honchar Dnipro National University, Ukraine
  • Anatoly M. Nesterov Oles Honchar Dnipro National University, Ukraine

DOI:

https://doi.org/10.15421/jchemtech.v29i4.244347

Keywords:

sulfur dioxide, contact apparatus, catalyst

Abstract

Purification of process gases, primarily products of oil and gas production, from sulfur-containing compounds with the conversion of the latter into sulfuric acid by the method of wet catalysis is one of the demanded production processes. This work aimed to develop a way calculation of the most complex apparatus of this technology - a contact apparatus for the oxidation of sulfur dioxide – using the CHEMCAD program. The authors investigated the behavior of a model of the SO2 oxidation process in a five-bed contact apparatus, proposed a method for calculating the optimal temperature line for SO2 oxidation using CHEMCAD, and showed a graphical calculation of the contacting process diagram based on it. The authors propose to use this work to develop a method for the design of such equipment.

Author Biography

Michael A. Podzharsky, Oles Honchar Dnipro National University

Кандидат технитческих наук, доцент кафедры химии и химической технологии химического факультета

References

Microsoft Academic. Wet sulfuric acid process https://academic.microsoft.com/topic/91883011/publication/search?q=Wet%20sulfuric%20acid%20process&qe=And(Composite(F.FId%253D91883011)%252CTy%253D%270%27) &f=&orderBy=0&pi=1.

Almirall, B. X. (2009). Introduction to Wet Sulfuric Acid Plants Optimization Through Exergoeconomics (Master’s thesis). https://upcommons.upc.edu /handle/2099.1/9246

Choia B., Lima S., Andikaa R., Jeonb J., Lee M. (2014). Detailed process simulation of syngas treatment with wet sulfuric acid process in a 300 MWe IGCC power plant. Energy Procedia, 61, 2211 – 2214.

Al-Dallal, A. J. A. (2013). Simulation of a Wet Sulfuric Acid Process (WSA) for Utilization of Acid Gas Separated from Omani Natural Gas. Al-Khwarizmi Engineering Journal 9(3), 58 – 69.

Rosenberg, H. (2006). Topsoe wet gas sulphuric acid (WSA) technology – an attractive alternative for reduction of sulphur emissions from furnaces and converters / H. Rosenberg in The Southern African Institute of Mining and Metallurgy, International Platinum Conference ‘Platinum Surges Ahead’ Marshalltown, South Africa: SAIMM.

Husnil Y. A., Andika R., Lee M. (2019). Optimal plant-wide control of the wet sulfuric acid process in anintegrated gasification combined cycle power plant. Journal of Process Control, 74, 147–159.

Igin, V. V., Filatov, Yu. V., Dolgov, D. V., Andrianov, A.A., Levin, N. V., Khodorchenko, V. M., Yegorov, V. S. (2014). RU Patent No 2521626 (С1). Moscow, Russian Federation. Federal Service for Intellectual Property.

Zelenova M. A., Igin, V. V., Grabun, Ye. M., A. (2020). RU Patent No 2711642 (С1). Moscow, Russian Federation. Federal Service for Intellectual Property.

Erkes B., Haverkamp V., Kuerten M. (2011). European Patent No. 1979270 (B1).

Erkes B., Kuerten M., Haverkamp V. (2017). European Patent No. 2256085 (А2).

Grabun, Ye. M., Dolgov, D. V., Igin, V. V., Kudelin, V. Kh., Krutikov, A. S., Smirnov, A. A. (2018). RU Patent No 2652256 (С1). Moscow, Russian Federation. Federal Service for Intellectual Property.

Tian, Y., Demirel, S. E., Hasan, M. M. F., Pistikopoulos, E. N. (2018). An Overview of Process Systems Engineering Approaches for Process Intensification: State of the Art. Chem. Engineering and Processing - Process Intensification, 133, 160 – 210. https://doi.org/10.1016/ j.cep.2018.07.014

Towler, G., Sinnot, R. (2012). Chemical engineering design: Principles, Practice and Economics of Plant and Process Design, Elsevier Ltd. https://doi.org/10.1016/C2009-0-61216-2.

Latyypov, R. M. (2017). [Experience in using advanced CHEMCAD capabilities in modeling the process of ethylene glycol rectification]. Bull. of the Technol. University. 20(17), 81 – 85.

Borello, D., Pantaleo, A. M., Caucci, M., De Caprariis, B., De Filippis, P., Shah, N. (2017). Modeling and Experimental Study of a Small-Scale Olive Pomace Gasifier for Cogeneration: Energy and Profitability Analysis. Energies, 10(12). https://doi.org/10.3390/ en10121930.

Leonzio, G. (2017). Optimization through Response Surface Methodology of a Reactor Producing Methanol by the Hydrogenation of Carbon Dioxide. Processes, 5(4). https://doi.org/10.3390/ pr5040062.

Leonzio, G. (2018). Methanol Synthesis: Optimal Solution for a Better Efficiency of the Process. Processes, 6(3). https://doi.org/10.3390/ pr6030020.

Piotrowski, W., Kubica, R. (2021). Integration of the Process for Production of Ethyl Acetate by an Enhanced Extraction Process. Processes, 9(8). https://doi.org/10.3390/ pr9081425

Al-Mhanna, N. M. (2018). Simulation of High-Pressure Separator Used in Crude Oil Processing. Processes, 6(11). https://doi.org/10.3390/pr6110219.

Huzova, I. (2018). [Simulation and optimization of the distillation column to produce 97 % propylene]. Chemistry, Technology and Application jf Substances, 1(2), 111 – 118. https://doi.org/10.23939/ ctas2018.02.111.

Huzova, I. (2019). [Using chemcad software for simulation of the process of distillation of benzene raffinate to prepare petroleum solvents]. Voprosy khimii i khimicheskoi tekhnologi, 6, 60 – 68.

Sánchez, A. P., Sánchez, E. J. P. Silva, R. M. S. (2019). Simulation of the acrylic acid production process through catalytic oxidation of gaseous propylene using ChemCAD ® simulator. Ingeniare. Revista chilena de ingeniería, 27(1). http://dx.doi.org/10.4067/S0718-33052019000100142.

Giuliano, A, Catizzone, E, Freda, C. (2021). Int. J. Environ. Res. Public Health. 18(2). https://doi.org/10.3390/ ijerph18020807.

Ziyatdinov, N.N, Lapteva, T. V., Ryzhov, D. A. (2008). [Mathematical modeling of chemical-technological systems using the ChemCad program]. – Kazan, Russian Federation (in Russian).

Amelin, A. G. (1983) [Sulfuric acid technology]. Moskow, USSR: Khimiya (in Russian).

Malin K.M. (1971). [Sulfuric Acidist's Handbook]. Moskow, USSR: Khimiya (in Russian).

Pozin, M. E., Zinyuk, R. Yu. (1985). [Physical and chemical bases of inorganic technology]. Leningrad, USSR: Khimiya (in Russian).

Kutepov A. M., Bondareva M. G., Berengarten M. G. (1990). [General chemical technology]. Moskow, USSR: Vy`sshaya shkola (in Russian).

Published

2022-01-21