MODELING OF THE TECHNOLOGICAL PROCESS OF SULFUR DIOXIDE OXIDATION USING THE CHEMCAD PROGRAM
DOI:
https://doi.org/10.15421/jchemtech.v29i4.244347Keywords:
sulfur dioxide, contact apparatus, catalystAbstract
Purification of process gases, primarily products of oil and gas production, from sulfur-containing compounds with the conversion of the latter into sulfuric acid by the method of wet catalysis is one of the demanded production processes. This work aimed to develop a way calculation of the most complex apparatus of this technology - a contact apparatus for the oxidation of sulfur dioxide – using the CHEMCAD program. The authors investigated the behavior of a model of the SO2 oxidation process in a five-bed contact apparatus, proposed a method for calculating the optimal temperature line for SO2 oxidation using CHEMCAD, and showed a graphical calculation of the contacting process diagram based on it. The authors propose to use this work to develop a method for the design of such equipment.
References
Microsoft Academic. Wet sulfuric acid process https://academic.microsoft.com/topic/91883011/publication/search?q=Wet%20sulfuric%20acid%20process&qe=And(Composite(F.FId%253D91883011)%252CTy%253D%270%27) &f=&orderBy=0&pi=1.
Almirall, B. X. (2009). Introduction to Wet Sulfuric Acid Plants Optimization Through Exergoeconomics (Master’s thesis). https://upcommons.upc.edu /handle/2099.1/9246
Choia B., Lima S., Andikaa R., Jeonb J., Lee M. (2014). Detailed process simulation of syngas treatment with wet sulfuric acid process in a 300 MWe IGCC power plant. Energy Procedia, 61, 2211 – 2214.
Al-Dallal, A. J. A. (2013). Simulation of a Wet Sulfuric Acid Process (WSA) for Utilization of Acid Gas Separated from Omani Natural Gas. Al-Khwarizmi Engineering Journal 9(3), 58 – 69.
Rosenberg, H. (2006). Topsoe wet gas sulphuric acid (WSA) technology – an attractive alternative for reduction of sulphur emissions from furnaces and converters / H. Rosenberg in The Southern African Institute of Mining and Metallurgy, International Platinum Conference ‘Platinum Surges Ahead’ Marshalltown, South Africa: SAIMM.
Husnil Y. A., Andika R., Lee M. (2019). Optimal plant-wide control of the wet sulfuric acid process in anintegrated gasification combined cycle power plant. Journal of Process Control, 74, 147–159.
Igin, V. V., Filatov, Yu. V., Dolgov, D. V., Andrianov, A.A., Levin, N. V., Khodorchenko, V. M., Yegorov, V. S. (2014). RU Patent No 2521626 (С1). Moscow, Russian Federation. Federal Service for Intellectual Property.
Zelenova M. A., Igin, V. V., Grabun, Ye. M., A. (2020). RU Patent No 2711642 (С1). Moscow, Russian Federation. Federal Service for Intellectual Property.
Erkes B., Haverkamp V., Kuerten M. (2011). European Patent No. 1979270 (B1).
Erkes B., Kuerten M., Haverkamp V. (2017). European Patent No. 2256085 (А2).
Grabun, Ye. M., Dolgov, D. V., Igin, V. V., Kudelin, V. Kh., Krutikov, A. S., Smirnov, A. A. (2018). RU Patent No 2652256 (С1). Moscow, Russian Federation. Federal Service for Intellectual Property.
Tian, Y., Demirel, S. E., Hasan, M. M. F., Pistikopoulos, E. N. (2018). An Overview of Process Systems Engineering Approaches for Process Intensification: State of the Art. Chem. Engineering and Processing - Process Intensification, 133, 160 – 210. https://doi.org/10.1016/ j.cep.2018.07.014
Towler, G., Sinnot, R. (2012). Chemical engineering design: Principles, Practice and Economics of Plant and Process Design, Elsevier Ltd. https://doi.org/10.1016/C2009-0-61216-2.
Latyypov, R. M. (2017). [Experience in using advanced CHEMCAD capabilities in modeling the process of ethylene glycol rectification]. Bull. of the Technol. University. 20(17), 81 – 85.
Borello, D., Pantaleo, A. M., Caucci, M., De Caprariis, B., De Filippis, P., Shah, N. (2017). Modeling and Experimental Study of a Small-Scale Olive Pomace Gasifier for Cogeneration: Energy and Profitability Analysis. Energies, 10(12). https://doi.org/10.3390/ en10121930.
Leonzio, G. (2017). Optimization through Response Surface Methodology of a Reactor Producing Methanol by the Hydrogenation of Carbon Dioxide. Processes, 5(4). https://doi.org/10.3390/ pr5040062.
Leonzio, G. (2018). Methanol Synthesis: Optimal Solution for a Better Efficiency of the Process. Processes, 6(3). https://doi.org/10.3390/ pr6030020.
Piotrowski, W., Kubica, R. (2021). Integration of the Process for Production of Ethyl Acetate by an Enhanced Extraction Process. Processes, 9(8). https://doi.org/10.3390/ pr9081425
Al-Mhanna, N. M. (2018). Simulation of High-Pressure Separator Used in Crude Oil Processing. Processes, 6(11). https://doi.org/10.3390/pr6110219.
Huzova, I. (2018). [Simulation and optimization of the distillation column to produce 97 % propylene]. Chemistry, Technology and Application jf Substances, 1(2), 111 – 118. https://doi.org/10.23939/ ctas2018.02.111.
Huzova, I. (2019). [Using chemcad software for simulation of the process of distillation of benzene raffinate to prepare petroleum solvents]. Voprosy khimii i khimicheskoi tekhnologi, 6, 60 – 68.
Sánchez, A. P., Sánchez, E. J. P. Silva, R. M. S. (2019). Simulation of the acrylic acid production process through catalytic oxidation of gaseous propylene using ChemCAD ® simulator. Ingeniare. Revista chilena de ingeniería, 27(1). http://dx.doi.org/10.4067/S0718-33052019000100142.
Giuliano, A, Catizzone, E, Freda, C. (2021). Int. J. Environ. Res. Public Health. 18(2). https://doi.org/10.3390/ ijerph18020807.
Ziyatdinov, N.N, Lapteva, T. V., Ryzhov, D. A. (2008). [Mathematical modeling of chemical-technological systems using the ChemCad program]. – Kazan, Russian Federation (in Russian).
Amelin, A. G. (1983) [Sulfuric acid technology]. Moskow, USSR: Khimiya (in Russian).
Malin K.M. (1971). [Sulfuric Acidist's Handbook]. Moskow, USSR: Khimiya (in Russian).
Pozin, M. E., Zinyuk, R. Yu. (1985). [Physical and chemical bases of inorganic technology]. Leningrad, USSR: Khimiya (in Russian).
Kutepov A. M., Bondareva M. G., Berengarten M. G. (1990). [General chemical technology]. Moskow, USSR: Vy`sshaya shkola (in Russian).
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Днипровский национальный университет имени Олеся Гончара
This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors reserve the right of attribution for the submitted manuscript, while transferring to the Journal the right to publish the article under the Creative Commons Attribution License. This license allows free distribution of the published work under the condition of proper attribution of the original authors and the initial publication source (i.e. the Journal)
- Authors have the right to enter into separate agreements for additional non-exclusive distribution of the work in the form it was published in the Journal (such as publishing the article on the institutional website or as a part of a monograph), provided the original publication in this Journal is properly referenced
- The Journal allows and encourages online publication of the manuscripts (such as on personal web pages), even when such a manuscript is still under editorial consideration, since it allows for a productive scientific discussion and better citation dynamics (see The Effect of Open Access).