Autocatalytic dissipative chemical system, bifurcation, chaos, hysteresis, sinusoidal excitation


In this paper, we study the controlling of chaotic behaviours in an autocatalytic dissipative chemical system governed by a forced modified DuffingVan der Pol (DVP) oscillator driven by various sinusoidal periodic forces. The external sinusoidal periodic forces considered are sine wave, modulus of sine wave and rectified sine wave. The effects of the sinusoidal forces and the perturbation parameter Γ on chaotic motions of the chemical system have been strongly analyzed. Controlling of chaotic behaviours have been investigated through bifurcation structures, Lyapunov exponent, phase portrait, Poincar´e section and time series. Coexistence of several attractors and hysteresis phenomenon have been studied in detail in the system with sinusoidal excitations.


Epstein, I., Pojman, J. (1998). An Introduction to nonlinear chemical dynamics, oscillations, waves, patterns, and chaos, Oxford University Press, New York, Oxford.

Gray, P., Scott, S., Chemical oscillations and instabilities: Nonlinear chemical kinetics, Clarendon Press, Oxford, 1990

Peng, Z., Linderoth, J., Baum, D.A, (2022). The hierarchical organization of autocatalytic reaction networks and its relevance to the origin of life, PLoS Comput Biol, 18(9), e1010498.

Blokhuis, A., Lacoste, D., Nghe, P, (2020). Universal motifs and the diversity of autocatalytic systems, Proc Natl Acad Sci. USA, 117, 25230–25236. pmid:32989134.

Christopher, E. A., Amanda, D., Kady, O., Shui Ling Chen, Hokchhay, T., Christopher, R., Eunsuk, K., Sherief, R., Brenda, M., Rubenstein, B.M, Rosenstein, J.K., (2021). Leveraging autocatalytic reactions for chemical domain image classification, Chem. Sci., 12, 5464–5472.

Suddalai Kannan, K., Thameem Ansari, M., Amutha, K., Chinnathambi, V., Rajasekar, S. (2023). Control of chaos and bifurcation by nonfeedback methods in an autocatalytic chemical system, International Journal of Chemical Kinetics, 1–7.

Guruparan, S., Ravindran Durai Naayagam, B., Ravichandran, V., Chinnathambi, V., Rajasekar, S. (2015). Hysteresis, vibrational resonance and chaos in Brusselator chemical system under the excitation of amplitude modulated force, Chem. Sci. Rev. Letts., 49(5), 870–879.

Ott, E., Grebogi, C., Yorke, J.A, (1990). Controlling chaos, Phys. Rev. Lett., 64(23), 2837. doi:10.1103/PhysRevLett.64.2837.

Din, Q., (2022). Dynamics and Hopf bifurcation of a chaotic chemical reaction model, MATCH Commun. Math. Comput. Chem., 88, 351–369.

Xu, C., Wu, Y., (2015). Bifurcation and control of chaos in a chemical system, Applied Mathematical Modelling, 39(8), 2295–2310.

Peng, B.O., Petrov, V., Showalter, K., (1991). Controlling chemical chaos, The Journal of Physical Chemistry, 95(13), 4957–4959. doi: 10.1021/j100166a013.

Olabod, D. L., Lamboni, B., Orou, J. B. C. (2019). Active control of chaotic oscillations in nonlinear chemical dynamics, Journal of Applied Mathematics and Physics, 7, 547558.

Khan, A., Chaudhary, H. (2022). Comprehensive analysis on controlling and hybrid synchronization in identical chaotic system via active control method, Journal of Physics: Conference series, 2267, 012039. doi:10.1088/1742-6596/2267/1/012039.

Monwanou, A. V., Koukpemedji, A. A, Ainemon, C., Nwagouon Tuwa, P. R., Miwadinou, C. H., Chabi Orou, J. B. (2020). Nonlinear dynamics in a chemical reaction under an amplitude modulated excitation: Hysteresis, vibrational resionance, multistabilty and chaos, Hindawi, Complexity, 2020, 8823458, 1–16.

Guruparan, S., Ravindran Durai Nayagam, B., Jeyakumari, S., Chinnathambi, V., (2015). Effect of different shape of periodic forces onchaotic oscillations in Brusselator chemical system, Int. J. of Comput. Theor. Chem., 3(3), 19–27.

Olabod, D. L., Miwadinou, C. H., Monwanou, A. V., Chabi Orou, J. B. (2018). Horseshoes Chaos and Its Passive Control in Dissipative Nonlinear Chemical Dynamics. Physica Scripta, 93(8), 1–12, 085203.

Petrov, V., Gaspar, V., Masere, J., Showalter, K., (1993). Controlling chaos in the Belousov-Zhabotinsky reaction, Nature, 361, 240–243.

Mingjing, S., Tan, Y., Chen, L. (2008). Dynamical behaviours of the brusselator system with impulsive input, Journal of Mathematical Chemistry, 44(3), 637–649. doi:10.1007/s10910-008-9362-y.

Kavitha, S., Guruparan, S., Ravindran Durai Nayagam, B., Chinnathambi, V. (2018). Effect of frequency modulated signal on chaotic motion in Brusselator chemical reaction, International Journal of Chemical Studies, 6(2), 896–899.

Olabod, D. L., Miwadinou, C. H., Monwanou, A. V., Chabi Orou, J. B., (2018). Horseshoes Chaos and Its Passive Control in Dissipative Nonlinear ChemicalDynamics, Physica Scripta, 93, 085203.

Bartuccelli, M., Gentile, G., Wright, J. A. (2016). Stable dynamics in forced systems with sufficiently high/low forcing frequency, Chaos, 26, 083108.

Chen, X., Fu, X., Jing, Z., (2021). Chaos control in a special pendulum system for ultra-subharmonic resonance, Discrete and Continuous Dynamical Systems-B, 26(2), 847–860.

Adechinan, A. J., Kpomahou, Y. J. F., Hinvi, L. A., Miwadinou, C. H. (2022). Chaos, coexisting attractors and chaos control in a nonlinear dissipative chemical oscillator, Chinese Journal of Physics, 77, 2684–2697.

Olabode, D.L., Miwadinou, C.H., Monwanou, V.A., Chabi Orou, J.B., (2019). Effects of passive hydrodynamics force on harmonic and chaotic oscillations in nonlinear chemical dynamics, Physica D: Nonlinear phenomena, 386, 49–59.

Samardzija, N., Greller, L. D., Wasserman, E., (1989). Nonlinear chemical kinetic schemes derived from mechanical and electrical dynamical systems, J. Chem. Phys., 90(4), 2296–2304.

Kpomahou, Y.J.F., Adomou, A., Adechinan, J.A., Yamadjako, A.E., Madogni, I.V., (2022). Chaotic Behaviors and Coexisting Attractors in a New Nonlinear Dissipative Parametric Chemical Oscillator, Hindawi, Complexity, 2022, 9350516.

Lorenz, E. N. (1963). Deterministic nonperiodic flow, J. Atmos. Sci., 20, 130–141.¡0130:

Rossler, O. E., (1976). An Equation for Continuous Chaos, Physics Letters A, 57, 39739.

Holmes, P.J., (1979). A Nonlinear oscillator with a strange attractor, Philosophical Transaction of the Royal Society of London, Series A: Mathematical and Physical Science, 292, 419–448.

Xu, W. G., Li, Q. S. (2002). A chemical chaotic system derived from Chua’s circuit, J. Chem. Research (S), 295–296

Miwadinou, C.H., Monwanou, A.V., Yovogan, J., Hinvi, L.A., Nwagoum Tuwa, P.R., Chabi Orou, J.B. (2018). Modeling Nonlinear Dissipative Chemical Dynamics by a Forced Modified Van der Pol-Duffing Oscillator with Asymmetric Potential: Chaotic Behaviors Predictions, Chinese Journal of Physics, 56, 1089–1104.

Bala Shunmuga Jothi, V., Selvaraj. S., Chinnathambi, V., Rajasekar. S. (2017). Bifurcations and chaos in two-coupled periodically driven four-well Duffing-van der Pol oscillators, Chinese Journal of Physics, 55(5), 1849–1856.

Sethu Meenakshi, M.V., Athisayanathan, S., Chinnathambi, V., Rajasekar, S. (2017). Analytical estimates of the effect of amplitude modulated signal in nonlinearly damped Duffing – van der Pol oscillator, Chinese journal of physics, 55(6), 2208–2217.

Sethu Meenakshi, M.V., Athisayanathan, S., Chinnathambi, V. (2019). Horseshoe Dynamics in Fractionally Damped Duffing-Vander Pol Oscillator Driven by Nonsinusoidal Forces, International Journal of Nonlinear Science, 27(2), 81–94.

Attia, N., Seba, D., Akgl, A., Nour, A., (2021). Solving Duffing-Van der Pol Oscillator Equations of Fractional Order by an Accurate Technique, J. Appl. Comput. Mech., 7(3), 1480–1487. doi: 10.22055/JACM.2021.35369.2642.

Sethu Meenakshi, M.V., Athisayanathan, S., Chinnathambi, V., Rajasekar, S., (2019). Effect of Fractional Damping in Double-Well Duffing-Vander Pol Oscillator Driven by Different Sinusoidal Forces, De gruyter, ijnsns. 0165

Valli Priyatharsini, S., Bhuvaneswari, B., Chinnathambi, V., and Rajasekar, S., (2020). Prediction of Horseshoe Chaos in a Nonlinearly Damped Asymmetrical Systems, Chaotic Modeling and Simulation (CMSIM), 2, 133-146.

Wolf, A., Swift, J.B., Swinny, H.L., Vastano, J.A., (1985). Determination of Lyapunov exponents from a time series, Physica D, 16, 285-317.