first principle; Ultrasoft pseudopotential; Density of states; Refractive index; Hydrostaticpressure.


The band structure, density of state, and optical properties of TiO2 rutile were studied using first principles calculations within the framework of density functional theory using the generalized gradient approximation (GGA-RPBE) at both zero and high pressures. we used the Birch-Murnaghan equation of state calculate of volume and bulk modulus by approximation that we mentioned above and our results were compared with previous theoretical and experimental data, we noticed a good agreement between the results. The band gap of 2.098 eV (GGA) remains unchanged when the pressure is increased from 0 to 10 GPa, indicating an underestimation. The reduction in volume and lattice constants with increasing pressure is responsible for the decrease in band gap. There is a good agreement between the experimental results and the dielectric constant ε (ω) and refractive index. The photocatalytic activity of TiO2 is found to decrease with increasing pressure based on the absorption spectrum. The energy loss spectra show new peaks as a result of the pressure effect on the energy loss function. From our results, we noticed the effect of pressure within the range (0–60 GPa) on each of the structural, electronic and optical properties, and there is also good agreement between the current results and previous results.


Diebold, U. (2003). The surface science of titanium dioxide. Surface science reports, 48(5-8), 53-229.‏ https://doi.org/10.1016/S0167-5729(02)00100-0

Long, L. L., Zhang, A. Y., Yang, J., Zhang, X., Yu, H. Q. (2014). A green approach for preparing doped TiO2 single crystals. ACS Applied Materials & Interfaces, 6(19), 16712–16720.‏ ‏ https://doi.org/10.1021/am503661w

Azer, B. B., Gulsaran, A., Pennings, J. R., Saritas, R., Kocer, S., Bennett, J. L., Yavuz, M. (2022). A Review: TiO2 based photoelectrocatalytic chemical oxygen demand sensors and their usage in industrial applications. Journal of Electroanalytical Chemistry, 918, 116466.‏ ‏ https://doi.org/10.1016/j.jelechem.2022.116466

Varghese, O. K., Grimes, C. A. (2003). Metal oxide nanoarchitectures for environmental sensing. Journal of nanoscience and nanotechnology, 3(4), 277–293.‏ https://doi.org/10.1166/jnn.2003.158

Lazzeri, M., Vittadini, A., Selloni, A. (2001). Structure and energetics of stoichiometric TiO2 anatase surfaces. Physical Review B, 63(15), 155409.‏ https://doi.org/10.1103/PhysRevB.63.155409

Nie, X., Zhuo, S., Maeng, G., & Sohlberg, K. (2009). Doping of TiO2 Polymorphs for Altered Optical and Photocatalytic Properties. International Journal of Photoenergy, 2009.‏ https://doi.org/10.1155/2009/294042

Zaleska, A. (2008). Doped-TiO2: a review. Recent patents on engineering, 2(3), 157–164. ‏ https://doi.org/10.2174/187221208786306289

Henderson, M. A. (2011). A surface science perspective on TiO2 photocatalysis. Surface Science Reports, 66(6-7), 185–297.‏ https://doi.org/10.1016/j.surfrep.2011.01.001

Labat, F., Baranek, P., Domain, C., Minot, C., & Adamo, C. (2007). Density functional theory analysis of the structural and electronic properties of TiO2 rutile and anatase polytypes: Performances of different exchange-correlation functionals. The Journal of chemical physics, 126(15).‏ https://doi.org/10.1063/1.2717168

Morita, K., Yasuoka, K. (2018). Density functional theory study of atomic and electronic properties of defects in reduced anatase TiO2 nanocrystals. AIP Advances, 8(3).‏ https://doi.org/10.1063/1.5021024

Islam, M. M., Bredow, T., Gerson, A. (2007). Electronic properties of oxygen-deficient and aluminum-doped rutile TiO2 from first principles. Physical Review B, 76(4), 045217.‏ https://doi.org/10.1103/PhysRevB.76.045217

Fox, H., Newman, K. E., Schneider, W. F., Corcelli, S. A. (2010). Bulk and surface properties of rutile TiO2 from self-consistent-charge density functional tight binding. Journal of chemical theory and computation, 6(2), 499–507. https://doi.org/10.1021/ct900665a

Manzoli, M., Freyria, F. S., Blangetti, N., Bonelli, B. (2022). Brookite, a sometimes under evaluated TiO2 polymorph. RSC Advances, 12(6), 3322-333. https://doi.org/10.1039/D1RA09057G

Zhao, W., Li, Y., Shen, W. (2021). Tuning the shape and crystal phase of TiO2 nanoparticles for catalysis. Chemical Communications, 57(56), 6838–6850.‏ https://doi.org/10.1039/D1CC01523K

Milman, V., Refson, K., Clark, S. J., Pickard, C. J., Yates, J. R., Gao, S. P., Segall, M. D. (2010). Electron and vibrational spectroscopies using DFT, plane waves and pseudopotentials: CASTEP implementation. Journal of Molecular Structure: THEOCHEM, 954(1-3), 22–35.‏ https://doi.org/10.1016/j.theochem.2009.12.040‏

Gao, S. P., Pickard, C. J., Perlov, A., Milman, V. (2009). Core-level spectroscopy calculation and the plane wave pseudopotential method. Journal of Physics: Condensed Matter, 21(10), 104203.‏ ‏ 10.1088/0953-8984/21/10/104203

Segall, M. D., Lindan, P. J., Probert, M. A., Pickard, C. J., Hasnip, P. J., Clark, S. J., Payne, M. C. (2002). First-principles simulation: ideas, illustrations and the CASTEP code. Journal of physics: condensed matter, 14(11), 2717.‏‏ https://doi.org/10.1088/0953-8984/14/11/301

Hammer, B. H. L. B., Hansen, L. B., Nоrskov, J. K. (1999). Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals. Physical review B, 59(11), 7413. https://doi.org/10.1103/PhysRevB.59.7413

Wen, J. Q., Zhang, J. M., Chen, G. X., Wu, H., Yang, X. (2018). The structural, electronic and optical properties of Nd doped ZnO using first-principles calculations. Physica E: Low-dimensional Systems and Nanostructures, 98, 168–173. https://doi.org/10.1016/j.physe.2018.01.002‏

Zhao, W. (2021). A Broyden–Fletcher–Goldfarb–Shanno algorithm for reliability-based design optimization. Applied Mathematical Modelling, 92, 447–465.‏‏ https://doi.org/10.1016/j.apm.2020.11.012

Wu, S., Luo, X., Long, Y., Xu, B. (2019). Exploring the phase transformation mechanism of titanium dioxide by high temperature in situ method. In IOP Conference Series: Materials Science and Engineering 493(1), 012010. https://doi.org/10.1088/1757-899X/493/1/012010‏

Birch, F. (1978). Finite strain isotherm and velocities for single‐crystal and polycrystalline NaCl at high pressures and 300 K. Journal of Geophysical Research: Solid Earth, 83(B3), 1257–1268.‏‏ https://doi.org/10.1029/JB083iB03p01257

Jun, Z., Jing-Xin, Y., Yan-Ju, W., Xiang-Rong, C., & Fu-Qian, J. (2008). First-principles calculations for elastic properties of rutile TiO2 under pressure. Chinese Physics B, 17(6), 2216.‏ https://doi.org/10.1088/1674-1056/17/6/046

Iuga, M., Steinle-Neumann, G., Meinhardt, J. (2007). Ab-initio simulation of elastic constants for some ceramic materials. The European Physical Journal B, 58, 127–133.‏ https://doi.org/10.1140/epjb/e2007-00209-1

Basavaraj, K., Nyayban, A., Panda, S. (2022, July). Structural phase transitions and elastic properties of TiO2 polymorphs: Ab-initio study. In IOP Conference Series: Materials Science and Engineering, 1248(1), 012064.‏ https://doi.org/10.1088/1757-899X/1248/1/012064

Yao, H., Ouyang, L., Ching, W. Y. (2007). Ab initio calculation of elastic constants of ceramic crystals. Journal of the American Ceramic Society, 90(10), 3194–3204.‏ https://doi.org/10.1111/j.1551-2916.2007.01931.x

Zhou, X. F., Dong, X., Qian, G. R., Zhang, L., Tian, Y., Wang, H. T. (2010). Unusual compression behavior of TiO2 polymorphs from first principles. Physical Review B, 82(6), 060102.‏ https://doi.org/10.1103/PhysRevB.82.060102

Al-Khatatbeh, Y., Lee, K. K., Kiefer, B. (2009). High-pressure behavior of TiO 2 as determined by experiment and theory. Physical Review B, 79(13), 134114. https://doi.org/10.1103/PhysRevB.79.134114

Naik, V. M., Haddad, D., Naik, R., Benci, J., Auner, G. W. (2002). Optical properties of anatase, rutile and amorphous phases of TiO2 thin films grown at room temperature by RF magnetron sputtering. MRS Online Proceedings Library (OPL), 755, DD11-12. https://doi.org/‏10.1557/PROC-755-DD11.12

Perdew, J. P., Levy, M. (1983). Physical content of the exact Kohn-Sham orbital energies: band gaps and derivative discontinuities. Physical Review Letters, 51(20), 1884. https://doi.org/10.1103/PhysRevLett.51.1884‏

Sham, L. J., Schlüter, M. (1983). Density-functional theory of the energy gap. Physical review letters, 51(20), 1888.‏ https://doi.org/10.1103/PhysRevLett.51.1888

Baizaee, S. M., Mousavi, N. (2009). First-principles study of the electronic and optical properties of rutile TiO2. Physica B: Condensed Matter, 404(16), 2111–2116. https://doi.org/10.1016/j.physb.2009.01.014‏

Kowalczyk, S. P., McFeely, F. R., Ley, L., Gritsyna, V. T., Shirley, D. A. (1977). The electronic structure of SrTiO3 and some simple related oxides (MgO, Al2O3, SrO, TiO2). Solid State Communications, 23(3), 161–169.‏ https://doi.org/10.1016/0038-1098(77)90101-6

Liu, Q. J., Liu, Z. T., Feng, L. P., Tian, H. (2010). First-principles study of structural, elastic, electronic and optical properties of rutile GeO2 and α-quartz GeO2. Solid state sciences, 12(10), 1748–1755. ‏ https://doi.org/10.1016/j.solidstatesciences.2010.07.025

Fang, R. C. (2003). Solid spectroscopy. Chinese Science Technology University Press, Hefei.‏

Zhang, Y., Shen, W. M. (2005). Basic of solid electronics. Zhe-Jiang University Press, Hangzhou.‏

Davis, T. A., Vedam, K. (1968). Pressure dependence of the refractive indices of the tetragonal crystals: ADP, KDP, CaMoO4, CaWO4, and rutile. JOSA, 58(11), 1446–1451. https://opg.optica.org/josa/abstract.cfm?URI=josa-58-11-1446‏

Lide, D. R. (2003). CRC Handbook of Chemistry and Physics, 83rd edn CRC Press, Boca Raton, FL. Nielsen et al.‏

Ghaleb, A. M., Munef, R. A., Mohammed, S. F. (2022). First principles study the effect of Zn doped MgO on the energy band gap using GGA approximation. Journal of Ovonic Research, 18(1).‏ https://doi.org/10.15251/JOR.2022.181.11






Physical and inorganic chemistry