FEATURES OF THE STRUCTURE OF COPPER-CONTAINING COMPOSITES BASED ON Cu+ MALEATE COMPLEXES

Authors

DOI:

https://doi.org/10.15421/jchemtech.v31i4.290194

Keywords:

Cu maleate complexes, copper-containing composites, quantum chemical modeling., X-ray phase analysis

Abstract

Quantum chemical modeling (Gaussian 09, AIM2000, Chemcraft 1.8) of the interaction of copper atoms with acidic maleate complexes Cu+ [Cu(НМ)(Н2О)] made it possible to identify two types of thermodynamically stable binuclear π-complexes of the general composition [Cu2(НМ)(H2O)2]. Type A is characterized by a framework structure in which both Cu+ ions and Cu0 atoms form π-bonds with sp2-hybridized carbon atoms of the vinyl fragment of the maleate ion within separate six-membered cycles (-Cu-С-С=О-Н-О-). Type B is a linear σ-connection of a hydrated copper atom with the carboxyl oxygen of the maleate ion. The closeness of the formation energies of molecules A and B (114.39 kJ/mol and 127.84 kJ/mol, respectively) indicates a high probability of their simultaneous formation during the synthesis of the composite {Cu(НМ)+Cu}. X-ray diffraction analysis of composite samples confirmed that there is no metallic copper phase in it, but there is a phase of a new substance products of the interaction of Cu0 atoms with π-complexes [Cu(НМ)(Н2О)]. The analysis of the obtained results of our theoretical and experimental research indicates that during the synthesis of copper-containing composites {Cu(НМ)+Cu} by partial chemical reduction of maleate complexes of Cu+, a mixture of mononuclear π-complexes [Cu(HM)(H2O)] with various binuclear π-complexes [Сu2(НМ)(Н2О)2] is formed.

References

Guo Z, Sadler P. J. (1999). Metals in medicine. Angewandte Chemie International Edition 1999; 38 (11): 1512–1531. http://doi: 10.1002/(SICI)1521-3773(19990601)38:11<1512::AID-ANIE1512>3.0.CO;2-Y

Hossain, M. S., Zakaria, C. M., Kudrat-E-Zahan, M. (2018). Metal complexes as potential antimicrobial agent: a review. American Journal of Heterocyclic Chemistry, 4(1), 1. http://dx.doi.org/10.11648/j.ajhc.20180401.11.

Aldabaldetrecu, M., Tamayo, L., Alarcon, R., Walter, M., Salas-Huenuleo, E., Kogan, M. J., Guerrero, J., Paez, M., Azócar, M. I. (2018). Stability of Antibacterial Silver Carboxylate Complexes against Staphylococcus epidermidis and Their Cytotoxic Effects. Molecules, 23(7), 1629.http://dx.doi.org/10.3390/molecules23071629.

Irfan, M. I., Amjad, F., Abbas, A., Rehman, M. F., Kanwal, F., Saeed, M., Ullah, S., Lu, C. (2022). Novel Carboxylic Acid-Capped Silver Nanoparticles as Antimicrobial and Colorimetric Sensing Agents. Molecules, 27, 3363. http://dx.doi.org/10.3390/molecules27113363.

Kalhapure, R. S., Akamanchi, K. G., Mocktar, C., Govender, T. (2014). Synthesis and Antibacterial Activity of Silver Nanoparticles Capped with a Carboxylic Acid-terminated Generation 1 Oleodendrimer. Chemistry letters, 43(7), 1110–1112. http://dx.doi.org/10.1246/cl.140151.

Theivasanthi, T., Alagar, M. (2011). Studies of copper nanoparticles effects on microorganism. Annals of Biological Research, 2(3), 368–373.

Sirova, G. O., Makarov, V. O., Mishina, M. M., Avramenko, V. L., Lapshin, V. V., Makarov, V. V. (2019). Copper – nanocopper: chemical and pharmaceutical aspect: monograph. Kharkiv: Planet-Print (in Ukrainian).

Vargalyuk, V. F., Polonskyy, V. А., Stets, O. S., Stets, N. V., Shchukin, A. І. (2014). [Microbiological properties of copper dispersion obtained by cathodic deposition in the presence of acrylic acid]. Bulletin of Dnipropetrovsk University. Series Chemistry, 22(2), 47–51 (in Ukrainian). http://dx.doi.org/10.15421/081420.

Vargaluyk, V. F., Polonskyy, V. A., Sklyar, T. V., Stets, N. V., Lahuta, O. V. (2023). Pysico-chemical and bactericidal properties of copper containing composites based on maleinate complexes Cu+. Journal of Chemistry and Technologies, 31(2), 208–215. https://doi.org/10.15421/jchemtech.v31i2.275070

Aliakbar Dehno Khalaji, Moslem Emami, Negin Mohammadi (2021). Antibacterial Activity of Copper (II) Complexes of Maleic Acid: Thermal Studies, and New Precursors for Preparation of CuO. Journal of Medicinal and Chemical Sciences, 4, 626–634. https://doi.org/10.26655/JMCHEMSCI.2021.6.11

Kurasova, Y. D., Vargaluyk, V. F., Polonskyy, V. A. (2022). Quantum chemical modeling of aquachlorocomplexes of Cu+ with acrylic, maleik and fumaric acids Journal of Chemistry and Technologies, 30(4), 530–536. https://doi.org/10.15421/jchemtech.v30i4.263280

Vargalyuk, V. F., Osokin, Y. S., Polonskyy, V. A., Glushkov, V. N. (2019). Features of (dπ-pπ)-binding of Cu(I) ions with acrylic, maleic and fumaric acids in aqueous solution. Journal of Chemistry and Technologies, 27(2), 148–157. https://doi.org/10.15421/081916/

Kamau, P., Jordan, R. B. (2002). Formation Constants of Copper (I)− Olefin Complexes in Aqueous Solution. Inorganic chemistry, 41(4), 884–891. doi: 10.1021/ic010872h

Navon, N., Masarwa, A., Cohen, H., Meyerstein, D. (1997). pH dependence of the stability constants of copper (I) complexes with fumaric and maleic acids in aqueous solutions. Inorganica chimica acta, 261(1), 29–35. https://doi.org/10.1016/S0020-1693(96)05575-2

Orlova, T. D., Katrovtseva, A. V., Bychkova, S. A., Lan, Fam Tkhi. (2011). The thermodynamic characteristics of formation of Copper(II) ion complexes with carboxylic acids in aqueous solutions. Journal of Coordination Chemistry. 85(2), 275–279. http://doi: 10.1134/S0036024411020269

Ardan, B., Kinzhybalo, V., Slyvka, Y., Shyyka, O., Luk’yanov, M., Lis, T., Mys’kiv, M. (2017). Ligand forced dimerization of copper(I)-olefin complexes bearing 1,3,4-thiadiazole core. Acta Cryst, C73, 36–46. https://doi.org/10.1107/S2053229616018751

Goreshnik E. A., Veryasov G., Morozov D.et al. (2016). Solvated copper(I) hexafluorosilicate π-complexes based on [Cu2(amtd)2]2+ (amtd = 2-allylamino-5-methyl-1,3,4-thiadiazole) dimer. J. Organomet. Chem, 810, 1–11. https://doi.org/10.1016/j.jorganchem.2016.03.001

Luk’yanov, M., Slyvka, Yu., Ardan, B., Mys’kiv, M. (2018). Synthesis and crystal structure of the π-complex of cuprum (І) sulfamate З2-(N-alil)-amino-5-metyl-1,3,4-thiadiazole composition |Cu2(C6H10N3S2)2(NH2SO3)2|. Visnyk Lviv. Univ. Ser. Chem., 59(1), 157–163 (in Ukrainian).

Vargalyuk V. F., Osokin, Y. S., Polonskyy, V. A. (2020). Formation of the π-complexes of copper atoms with acrylic, maleic and fumaric acids in aqueous medium. Journal of Chemistry and Technologies, 28(2), 153 160. https://doi.org/10.15421/082016

Vargaluyk, V. F., Polonskyy, V. A., Osokin, Y. S., Lahuta, O. V. (2021). Syntesis of copper composites containing maleic acid. Journal of Chemistry and Technologies, 29(3), 400–409. http://dx.doi.org/10.15421/jchemtech.v29i3.241965.

Altomare A. Corriero, N., Cuocci, C., Falcicchio, A., Moliterni, A., Rizzi R. (2017). Main features of QUALX2.0 software for qualitative phase analysis. Powder Diffraction, 32(1), S129–S134. https://doi.org/10.1017/S0885715617000240.

Frisch, M. J. E. A., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Nakatsuji, H. (2009). Gaussian 09, Revision A. 02, Gaussian. Inc., Wallingford, CT, 200(28).

König, F. B., Schönbohm, J., Bayles, D. (2001). AIM2000 – A program to analyze and visualize atoms in molecules. Journal of Computational Chemistry, 22(5), 545–559.

Zhurko, G. A. (2019). Chemcraft-graphical program for visualization of quantum chemistry computations, Version 1.8., from https://chemcraftprog.com.

Vargaljuk, V., Okovytyy, S., Polonskyy V., Kramska O., Shchukin A., Leszczynski J. (2016) Copper crystallization from aqueous solution: initiation and evolution of the polynuclear clusters. Journal of Cluster Science, 28(5), 1–12. doi: 10.1007/s10876-017-1239-4

Zavalij, P. E., Mys'kiv M. G., Gladyshevskij, E. I. (1985). Kristallicheskaja struktura monogidrata kislogo maleata medi(I). Kristallografija, 30, 688–692.

Momma, K., Izumi, F. (2011). VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 44(6), 1272–1276. https://doi.org/10.1107/S0021889811038970

Published

2024-01-26

Issue

Section

Physical and inorganic chemistry