STUDY OF THE PHOSPHATE ADHESION ON STAINLESS STEEL SURFACES: INVESTIGATION OF CLOGGING AND GEOGRAPHICAL SETTINGS

Authors

  • Mustapha Adar Industrial Engineering Laboratory. Sultan Moulay Slimane University, Faculty of Science and Technology, Beni Mellal, Morocco https://orcid.org/0000-0002-4546-3768
  • Mohcine Chakouri Team of Remote Sensing and GIS Applied to the Geosciences and the Environment, Faculty of Sciences and Technology, Morocco
  • Majda Medkour Industrial Engineering Laboratory. Sultan Moulay Slimane University, Faculty of Science and Technology, Morocco https://orcid.org/0000-0002-0310-7159
  • Zakarya Abbassi Laboratory of Search in Physics and Science for Engineer, Polydisciplinary Faculty, Sultan Moulay Slimane University, Morocco
  • Youssef Najih Industrial Engineering Laboratory. Sultan Moulay Slimane University, Faculty of Science and Technology, Morocco https://orcid.org/0000-0002-4334-9929
  • Jamaa Bengourram Industrial Engineering Laboratory. Sultan Moulay Slimane University, Faculty of Science and Technology, Morocco https://orcid.org/0000-0002-6556-5016
  • Mustapha Mabrouki Industrial Engineering Laboratory. Sultan Moulay Slimane University, Faculty of Science and Technology, Morocco https://orcid.org/0000-0001-8975-9803

DOI:

https://doi.org/10.15421/jchemtech.v33i1.300818

Keywords:

Adhesion, AFM, Clogging, Phosphate, Standard stainless steels, Surface energy

Abstract

Clogging, a physicochemical adhesion phenomenon, occurs between material surfaces, prompting our investigation into phosphate adhesion on steel surfaces and its associated clogging. Phosphate pellets, produced under varying pressures (80–340 bars) with 25 % water content, were analyzed after drying at 60 °C. Physicochemical interactions were explored through contact angle measurements, showing a decrease from 71° to 65° as compaction pressure increased, and surface energy calculations indicated an increase from 49 mJ/m² to 52.5 mJ/m². The phosphate originated from the extraction zone of the OCP in Ben Guerir, Morocco. Contact angle measurements on stainless steels (304, 304L, and 316) revealed that 316 steel exhibited hydrophobic behavior (contact angle 94°, surface energy 35 mJ/m²), while 304 and 304L were hydrophilic with contact angles of 68° and 70°, and surface energies of 48 mJ/m² and 45 mJ/m², respectively. Atomic force microscopy (AFM) revealed that 316 steel had the highest roughness (Ra = 45 nm) compared to 304 and 304L (Ra = 32 nm and 34 nm). A predictive adhesion model showed that 316 steel promotes phosphate adhesion (negative free energy of adhesion), while 304 and 304L steels displayed positive free energies, indicating weaker adhesion. These findings provide key parameters for understanding phosphate fouling on solid supports.

References

Webster, J., Tricard, M. (2004). Innovations in abrasive products for precision grinding, CIRP Ann. - Manuf. Technol., 53(2), 597–617, 2004, doi: 10.1016/S0007-8506(07)60031-6 .

Brinksmeier, E., Mutlugünes, Y., Klocke, F., Aurich, J. C., Shore, P., Ohmori, H. (2010). Ultra-precision grinding,” CIRP Ann., 59(2), 652–671. doi: 10.1016/J.CIRP.2010.05.001.

Badger, J., Murphy, S., O’Donnell, G. E. (2010). Loading in Grinding: Chemical Reactions in Steels and Stainless Steels,” Adv. Mater. Res., 126–128, 597–602. doi: 10.4028/www.scientific.net/AMR.126-128.597.

Patnaik Durgumahanti, U. S., Singh, V., Venkateswara Rao, P. (2010). A New Model for Grinding Force Prediction and Analysis, Int. J. Mach. Tools Manuf., 50(3), 231–240, doi: 10.1016/J.IJMACHTOOLS.2009.12.004.

Najih, Y., Adar, M., Medkour, M., Bengourram, J., Mabrouki, M. (2023). The Effect of Roughness on the Physicochemical Properties of a36 Steel: Phosphate Adhesion Study, J. Chem. Technol., 31(3), 581–589, doi: 10.15421/jchemtech.v31i3.278149.

Costa, D. O. (2013). The differential regulation of osteoblast and osteoclast activity by surface topography of hydroxyapatite coatings, Biomaterials, 34(30), 7215–7226. doi: 10.1016/j.biomaterials.2013.06.014.

Advincula, M.C., Rahemtulla, F.G., Advincula, R. C., Ada, E.T., Lemons, J. E., Bellis, S. L. (2006). Osteoblast adhesion and matrix mineralization on sol-gel-derived titanium oxide., Biomaterials, 27(10), 2201–2212, doi: 10.1016/j.biomaterials.2005.11.014.

Lampin, M., Warocquier-Clérout, C., Legris, M., Degrange, Sigot-Luizard, M. F. (1997). Correlation between substratum roughness and wettability, cell adhesion, and cell migration., J. Biomed. Mater. Res., 36(1), 99–108, doi:10.1002/(sici)1097-4636(199707)36:1<99::aid-jbm12>3.0.co;2-e.

Rouahi, M., Champion, E., Hardouin, P., Anselme, K. (2006). Quantitative kinetic analysis of gene expression during human osteoblastic adhesion on orthopaedic materials, Biomaterials, 27(14), 2829–2844 doi: 10.1016/J.BIOMATERIALS.2006.01.001.

Dasgupta, S., Tarafder, S., Bandyopadhyay, A., Bose, S. (2013). Effect of grain size on mechanical, surface and biological properties of microwave sintered hydroxyapatite., Mater. Sci. Eng. C. Mater. Biol. Appl., 33(5), 2846–2854, doi: 10.1016/j.msec.2013.03.004.

Y. Wang, S. Zhang, X. Zeng, L. L. Ma, K. A. Khor, and M. Qian, “Initial attachment of osteoblastic cells onto sol-gel derived fluoridated hydroxyapatite coatings,” J. Biomed. Mater. Res. Part A, vol. 84A, no. 3, pp. 769–776, 2008, https://doi.org/10.1002/jbm.a.31289.

Yang, L., Perez-Amodio, S., Barrère-de Groot, F. Y. F., Everts, V., van Blitterswijk, C. A., Habibovic, P. (2010). The effects of inorganic additives to calcium phosphate on in vitro behavior of osteoblasts and osteoclasts.,” Biomaterials, 31(11), 2976–2989, doi: 10.1016/j.biomaterials.2010.01.002.

Autumn, K., Gravish, N. (2008). Gecko adhesion: evolutionary nanotechnology, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., 366(1870), 1575–1590, 2008, doi: 10.1098/rsta.2007.2173.

Wang, L., Zhou, Q. (2014). Nepenthes pitchers: surface structure, physical property, anti-attachment function and potential application in mechanical controlling plague locust, Chinese Sci. Bull., 59(21), 2513–2523, doi: https://doi.org/10.1007/s11434-014-0383-6.

Feng L. (2002). Super-Hydrophobic Surfaces: From Natural to Artificial, Adv. Mater., 14(24), 1857–1860, doi: https://doi.org/10.1002/adma.200290020.

Guo, Z., Liu, W., Su, B.-L. (2011). Superhydrophobic surfaces: from natural to biomimetic to functional., J. Colloid Interface Sci., 353(2), 335–355, doi: 10.1016/j.jcis.2010.08.047.

Bhushan, B. (2009). Biomimetics: lessons from nature–an overview, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., 367(1893), 1445–1486, doi: 10.1098/rsta.2009.0011.

Elyaagoubi, M., Najih, Y., Khadiri, M., Mabrouki, M., Oueriagli, A., Outzourhit, A. (2017). Electrochemically deposited Bismuth-Telluride nanowires in nanoporous alumina, Мembranes, 8, 2070–2075.

Najih, Y. Adar, M. Charafih, Y. Rahmani, K. Khaouch, Z. Mabrouki, M. (2019). Elaboration and characterization of zno thin films structural and optical study, J. Phys. Conf. Ser., 1292(1), doi: 10.1088/1742-6596/1292/1/012009.

Adar, M., Najih, Y., Charafih, Y., Rahmani, K., Khaouch, Z., Mabrouki, M. (2019). Elaboration and characterization of zno thin films structural and optical study,” in Journal of Physics: Conference Series, doi: 10.1088/1742-6596/1292/1/012009.

Jeandin, M., Koivuluoto, H., Vezzu, S. (2015). Coating Properties BT - Modern Cold Spray: Materials, Process, and Applications, J. Villafuerte, Ed., Cham: Springer International Publishing, 107–224. doi: 10.1007/978-3-319-16772-5_4.

Wu, S. (1982). Polymer interface and adhesion. New York SE – Marcel Dekker New York. doi: LK - https://worldcat.org/title/807302380.

Weiss, H. (1995). Adhesion of advanced overlay coatings: mechanisms and quantitative assessment, Surf. Coatings Technol., 71(2), 201–207, doi: 10.1016/0257-8972(94)01022-B.

Anjjar, A., Driouch, Y., Benjelloun, F., Hmeid, H. A., El Alami, A. (2020). The phosphate series of Benguerir (Maastrichtian-Ypresian, Morocco): Mineralogy and mine planning, J. Mater. Environ. Sci, 2020(4), 574–583.

Henri C. (2014). Marine vertebrate faunas from the Maastrichtian phosphates of Benguerir (Ganntour Basin, Morocco): Biostratigraphy, palaeobiogeography and palaeoecology, Palaeogeogr. Palaeoclimatol. Palaeoecol., 409. doi: 10.1016/j.palaeo.2014.04.020.

Daafi, Y., Chakir, A., Jourani, E., Ouabba, S. M. (2014). Geology and Mine Planning of Phosphate Deposits: Benguerir Deposit Gantour Basin – Morocco, Procedia Eng., 83, 70–75, doi: 10.1016/J.PROENG.2014.09.014.

Hamadi F., Latrache, H. (2008). Comparison of contact angle measurement and microbial adhesion to solvents for assaying electron donor–electron acceptor (acid–base) properties of bacterial surface, Colloids Surfaces B Biointerfaces, 65(1), 134–139. doi: 10.1016/J.COLSURFB.2008.03.010.

Os, V. (2006). Interfacial Forces in Aqueous Media (2nd ed.). New Yourk: CRC press. doi: https://doi.org/10.1201/9781420015768.

Young, T. (1805). III. An essay on the cohesion of fluids,” Philos. Trans. R. Soc. London, 95, 65–87. doi: 10.1098/rstl.1805.0005.

Van Oss, C.-J. Good, R.-J., Chaudhury, M.-K. (1986). The role of van der Waals forces and hydrogen bonds in ``hydrophobic interactions’’ between biopolymers and low energy surfaces, J. Colloid Interface Sci., 111(2), 378–390, doi: 10.1016/0021-9797(86)90041-X.

Van Oss, C. J., Chaudhury, M. K., Good, R. J. (1986). Monopolar surfaces, Adv. Colloid Interface Sci., 28(C),. 35–64, doi: 10.1016/0001-8686(87)80008-8.

Morra M., Cassinelli, C. (1997). Bacterial adhesion to polymer surfaces: a critical review of surface thermodynamic approaches., J. Biomater. Sci. Polym. Ed., 9(1), 55–74, doi: 10.1163/156856297x00263.

Downloads

Published

2025-04-15

Issue

Section

Physical and inorganic chemistry