INTERACTION OF LABILE N-ALKOXY-N-CHLORO-N’-ARYLUREAS AND N-ACETOXY-N-ALKOXYUREAS WITH TRIMETHYL PHOSPHITE

Authors

  • Vasiliy G. Shtamburg Ukrainian State University of Science and Technologies, Scientific and Educational Institute “Ukrainian State Chemical and Technological University" , Ukraine https://orcid.org/0000-0001-9491-9429
  • Evgeniy A. Klots Ukrainian State University of Science and Technologies, Scientific and Educational Institute “Ukrainian State Chemical and Technological University" , Ukraine
  • Andrey A. Anishchenko Oles Honchar Dnipro National University, Ukraine https://orcid.org/0000-0001-5437-9499
  • Victor V. Shtamburg Ukrainian State University of Science and Technologies, Scientific and Educational Institute “Ukrainian State Chemical and Technological University" , Ukraine https://orcid.org/0000-0001-7734-0896
  • Svitlana V. Shishkina SSI Institute for Single Crystals, National Academy of Sciences of Ukraine, Institute of Organic Chemistry of National Academy of Sciences of Ukraine, Ukraine https://orcid.org/0000-0002-9986-9261
  • Alexander V. Mazepa A.V. Bogatsky Physico-Chemical Institute of National Academy of Sciences of Ukraine, Ukraine https://orcid.org/0000-0002-9628-7514
  • Svetlana V. Kravchenko Dnipro State Agrarian and Economic University, Ukraine https://orcid.org/0000-0003-2479-3562

DOI:

https://doi.org/10.15421/jchemtech.v33i3.332948

Keywords:

N-alkoxy-N-chloro-N’-arylureas; trimethyl phosphite; dimethyl N-alkoxy-N-(N’-arylcarbamoyl)phosphoroamidates; synthesis.

Abstract

The freshly synthesized N-alkoxy-N-chloro-N’-4-bromophenylureas undergo reaction with trimethyl phosphite in diethyl ether at room temperature yielding respectively dimethyl N-alkoxy-N-(N’-4-bromophenylcarbamoyl)phosphoroamidates with high yields. The unstable N-alkoxy-N-chloro-N’-phenylureas, freshly synthesized at -30°C, interact with trimethyl phosphite in diethyl ether at this low temperature to produce previously unknown dimethyl N-alkoxy-N-(N’-phenylcarbamoyl)phosphoroamidates. This reaction is the first example of the nucleofilic substitution at the nitrogen atom for unstable N-alkoxy-N-chloro-N’-phenylureas. Careful conditions selection and precise control made it possible to pevent premature destruction of the starting N-alkoxy-N-chloro-N’-4-bromophenylureas and N-alkoxy-N-chloro-N’-phenylureas. In contrast, N-acetoxy-N-alkoxyureas do not react with trimethyl phosphite under the same conditions. The structures of the resulting dimethyl N-alkoxy-N-(N’-4-bromophenylcarbamoyl)phosphoroamidates and dimethyl N-alkoxy-N-(N’-phenylcarbamoyl)phosphoroamidates were confirmed by ¹H, ³¹P, and ¹³C NMR spectroscopy, as well as mass spectrometry. A comparative analysis of ¹H, ³¹P and ¹³C NMR spectra of these dimethyl N-alkoxy-N-(N’-arylcarbamoyl)phosphoroamidates with those of dialkyl N-alkoxy-N-(N’-4-nitrophenylcarbamoyl)phosphoroamidates revealed numerous shared features and general structural characteristics of N-alkoxy-N-(N’-arylcarbamoyl)phosphoroamidates.

References

Ghosh, A.K., Brindisi, M. (2019). Urea Derivatives in Modern Drug Discovery and Medicinal Chemistry. J Med Chem. 63(6), 2751–2788. doi: 10.1021/acs.jmedchem.9b01541

Itumoh, E.J., Data, S., Leitao, E.M. (2020). Opening up the Toolbox: Synthesis and Mechanism of Phosporamidates. Molecules. 25(16), 3684. https://doi.org/10.3390/molecules25163684

Shtamburg, V.G., Klots, E.A., Shtamburg, V.V., Anishchenko, A.A., Shishkina, S.V., Mazepa, A.V. (2023). Nucleophilic substitution at nitrogen atom. N-Alkoxy-N-(dimethoxyphosphoryl)ureas, synthesis and structure. J. ,Mol. Structure, 1277, 134865. https://doi.org/10.1016/j.molstruc.2022.134865

Shtamburg V.G., Klots, E.A., Anishchenko, A.A., Shishkina, S.V., Mazepa, A.V., Kravchenko, S.V. (2024). Interaction of N-Alkoxy-N-chloro derivatives of amides, sulfonamides and ureas with trialkyl phosphites. XXVI Ukrainian Conference of Organic Chemistry and Biochemistry, Uzhgorod, 16-20 September 2024, Thesis, D-5. (In Ukrainian)

Shtamburg, V.G., Klots, E.A., Anishchenko, A.A., Shtamburg, V.V., Shishkina, S.V., Mazepa, A.V., Kravchenko, S.V. (2025). Interaction of N-Alkoxy-N-chloro-N’-arylureas with Trialkyl Phosphites as Route to Dialkyl N-Alkoxy-N-(N’-arylcarbamoyl)phosphoramidates. Synthesis. Voprosy khimii i khimicheskoi tecknologii – Issues of Chemistry and Chemical Technology, 2025, (5): in press.

Perronnet, J., Demoute, J.P. (1982). Approach to the 1-methoxy-2-benzimidazolinones. Gazzet. Chim. Ital., 112, 507–511.

Shtamburg, V.G., Tsygankov, A.V., Gerasimenko, M.V., Shishkin, O.V., Zubatyuk, R.I., Mazepa, A.V., Kostyanovsky, R.G. (2011). New approach to N,N-dialkoxy-N'-arylureas and N,N-dialkoxycarbamates. Mendeleev Commun., 21(1), 50−52. https://doi.org/10.1016/j.mencom.2011.01.021

Glover, S.A. (1998). Anomeric Amides – Structure, Properties and Reactivity. Tetrahedron, 54(26), 7229−7272. https://doi.org/10.1016/S0040-4020(98)00197-5

Cavanagh, K.L., Glover, S.A., Price, H.L., Schumacher, R.R. (2009). SN2 Substitution reactions at the Amide Nitrogen in the Anomeric Mutagens, N-Acyloxy-N-alkoxyamides. Aust. J. Chem., 62(7), 700–710. https://doi.org/10.1071/CH09166

Glover, S.A. (2009). N-Heteroatom-substituted hydroxamic esters, in The Chemistry of Hydroxylamines, Oximes and Hydroxamic Acids. Eds Rappoport, Z., Liebman, J. F., John Wiley and Sons, New York. PATAI’S Chemistry of Funcional Groups https://doi.org/10.1002/9780470682531.pat0470

Glover, S.A., Rosser, A.A. (2018). Heteroatom Substitution at Amide Nitrogen – Resonance Reduction and HERON Reactions of Anomeric Amides. Molecules, 23(11), 2834. https://doi.org/10.3390/molecules23112834

Cavanagh, K.L. Glover, S.A., Price, H.L. (2009). Schumacher, SN2 Substitution reactions at the Amide Nitrogen in the Anomeric Mutagens, N-Acyloxy-N-alkoxyamides. Aust. J. Chem., 62(7): 700–710. https://doi.org/10.1071/CH09166

Shtamburg, V.G., Tsygankov, A.V., Shishkin, O.V., Zubatyuk, R.I., Uspensky, B.V., Shtamburg, V.V., Mazepa, A.V., Kostyanovsky, R.G. (2012). The properties and structure of N-chloro-N-methoxy-4-nitrobenzamide. Mendeleev Commun., 22(3) 164–166. https://doi.org/10.1016/j.mencom.2012.05.019.

Digianantonio, K.M., Glover, S.A., Johns, J.P., Rosser, A.A. (2011). Synthesis and termal decomposition of N,N-dialkoxyamides. Org. Biomol. Chem., 9, 4116−4126. https://doi.org./10.1039/C1OB00008J

Glover, S.A., White, J.M., Rosser, A.A., Digianantonio, K.M. (2011). Structure of N,N-Dialkoxyamides: Pyramidal Anomeric Amides with Low Amidicity. J. Org. Chem., 76(23), 9757–9763. https://doi.org./10.1021/jo201856u

Glover, S.A., Rosser, A.A., Taherpour, A., Greatrex, B. (2014). Formation and HERON Reactivity of Cyclic N,N-Dialkoxyamides. Aust. J. Chem., 67(3), 507–520 https://doi.org./10.1071/CH13557

Pu, X., Li, Q., Lu, Z.,Yang, X. (2016). N-Chloro-N-methoxybenzenesulfonamide: A Chlorinating Reagent. Eur. J. Org. Chem., (36), 5937−5940. https://doi.org/10.1002/ejoc.201601226

Wang Yu, Bi C., Kawamata Yu, Grant L.N., Samp L., Richardson P.F., Zhang S., Harper K.C., Palkowitz M.D., Vasilopoulos, A., Collins M.R., Oderinde, M.S., Tyrol, C.C., Chen, D., LaChapelle, E.A., Bailey, J.B., Qiao, J.X., Baran, P.S. (2024). Discovery of N−X anomeric amides as electrophilic halogenation reagents. Nature Chemistry, 16, 1539−1545 https://doi.org/10.1038/s41557-024-01539-4.

Shtamburg, V.G., Tsygankov, A.V., Klots, E.A., Kostyanovsky, R.G. (2004). Acyloxy group exchange in N-acyloxy-N-alkoxyamides. Mendeleev Commun., 14(5) 208–210. https://doi.org/10.1070/MC2004v014n05ABEH001908

Shtamburg, V.G., Shishkin, O.V., Zubatyuk, R.I., Kravchenko, S.V., Tsygankov, A.V., Mazepa, A.V., Klots, E.A., Kostyanovsky, R.G. (2006). N-Chloro-N-alkoxyureas: synthesis, structure and properties. Mendeleev Commun., 16(3) 323–325. https://doi.org/10.1070/MC2006v016n06ABEH002382

Downloads

Published

2025-10-19